Answer:
357.475
Explanation:
First you need periodic table and you have to look for mass
Fe = 3 x 55.845 = 167.535
P = 2 x 30.97 = 61.94
o = 4 x 2 so 8 oxygen = 8 x 16 = 128
add all and you get 357.475
Methane gas and chlorine gas react to form hydrogen chloride gas and carbon tetrachloride gas. What volume of hydrogen chloride would be produced by this reaction if 3.16 L of chlorine were consumed at STP.
Be sure your answer has the correct number of significant digits.
Answer: Thus volume of carbon tetrachloride that would be produced is 0.788 L
Explanation:
According to ideal gas equation:

P = pressure of gas = 1 atm (at STP)
V = Volume of gas = 3.16 L
n = number of moles = ?
R = gas constant =
T =temperature =



According to stoichiometry:
4 moles of chlorine produces = 1 mole of carbon tetrachloride
Thus 0.141 moles of methane produces =
moles of carbon tetrachloride
volume of carbon tetrachloride =
Thus volume of carbon tetrachloride that would be produced is 0.788 L
Lead<span> (/lɛd/) is a chemical </span>element<span> in the carbon </span>group<span> with symbol Pb (from Latin: plumbum) and atomic </span>number<span> 82.
~ I don't know if this will help, but I hope it does. ~</span>
Answer: The retention factor describes the rate at which a compound migrates on a microscopic level.
The retention factor (Value) serves as a simple measurement of the relative binding of the compound of interest under the experimental conditions.
Retention factor values are used in identification purposes;
• Use to determine the affinity of the solute to the solvent
• Greater retention factor means greater affinity of solute to the solvent
Explanation:
Answer:
0.2 M
Explanation:
Step 1: Given data
- Mass of sugar (sucrose): 15 g
- Volume of water: 0.2 L (we will assume it is the volume of the solution)
There are different ways to express the concentration of a solution. We will calculate molarity, which is one of the most used.
Step 2: Calculate the moles of sucrose
The molar mass of sucrose is 342.3 g/mol.
15 g × 1 mol/342.3 g = 0.044 mol
Step 3: Calculate the molarity of the solution
Molarity is equal to the moles of solute divided by the liters of solution.
M = 0.044 mol/0.2 L = 0.2 M