Answer:
maximum
vertex at (-1,1)
axis of symm: x = -1
2 solutions
(-2,0) and (0,0)
Step-by-step explanation:
Answer:
abbreviation, shorthand or slang term: BIJS.
( I hope this was helpful) >;D
9514 1404 393
Answer:
$4127
Step-by-step explanation:
The amortization formula is good for finding this value.
A = P(r/12)/(1 -(1 +r/12)^(-12t))
where P is the amount invested at rate r for t years.
A = $600,000(0.055/12)/(1 -(1 +0.055/12)^(-12·20)) = $4127.32
You will be able to withdraw $4127 monthly for 20 years.
Answer:
You could just replace all the given possible values of k in the inequality and see which ones are solutions, but let's solve this in a more interesting way:
First, remember how the absolute value works:
IxI = x if x ≥ 0
IxI = -x if x ≤ 0
Then if we have something like:
IxI < B
We can rewrite this as
-B < x < B
Now let's answer the question, here we have the inequality:
I-k -2I < 18
Then we can rewrite this as:
-18 < (-k - 2) < 18
Now let's isolate k:
first, we can add 2 in the 3 parts of the inequality:
-18 + 2 < -k - 2 + 2 < 18 + 2
-16 < -k < 20
Now we can multiply all sides by -1, remember that this also changes the direction of the signs, then:
-1*-16 > -1*-k > -1*20
16 > k > -20
Then k can be any value between these two limits.
So the correct options (from the given ones) are:
k = -16
k = -8
k = 0
The answer is d or b it’s bin along time sense I’ve done it