Hi Vanessa
3x -1/9 (27) =18
3x - 27/9 =18
3x- 3 =18
Add 3 to both sides
3x-3+3=18+3
3x=21
Divide both sides by 3
3x/3= 21/3
x= 7
The value of x is 7
Now let's check if my answer is correct
To check it we gonna replace x by 7 and 27 for y
(3)(7) -1/9 (27) = 18
21 -1/9 (27)=18
21- 27/9 = 18
21- 3 = 18
18 = 18
The answer is good and I hope its help:0
Answer:
20
Step-by-step explanation:
n(A) only =15-4=11
n(B) only=9-4=5
n(A n B)=4
n(A U B)=11+5+4=20
A quadrilateral is any figure with 4 sides, no matter what the lengths of
the sides or the sizes of the angles are ... just as long as it has four straight
sides that meet and close it up.
Once you start imposing some special requirements on the lengths of
the sides, or their relationship to each other, or the size of the angles,
you start making special kinds of quadrilaterals, that have special names.
The simplest requirement of all is that there must be one pair of sides that
are parallel to each other. That makes a quadrilateral called a 'trapezoid'.
That's why a quadrilateral is not always a trapezoid.
Here are some other, more strict requirements, that make other special
quadrilaterals:
-- Two pairs of parallel sides . . . . 'parallelogram'
-- Two pairs of parallel sides
AND all angles the same size . . . . 'rectangle'
(also a special kind of parallelogram)
-- Two pairs of parallel sides
AND all sides the same length . . . 'rhombus'
(also a special kind of parallelogram)
-- Two pairs of parallel sides
AND all sides the same length
AND all angles the same size . . . . 'square'.
(also a special kind of parallelogram, rectangle, and rhombus)
Answer:
B
Step-by-step explanation:
Hi there!
TL;DR: Observe the vertices of the shapes inside the circles and their relationship with the circle.
For the first figure, the rectangle has 4 vertices and there are 4 dots on the perimeter of the circle.
For the second figure, the triangle has 3 vertices and there are 3 dots on the perimeter of the circle.
For the third figure, the line has 2 points and there are 2 dots on the perimeter of the circle.
For the fourth figure, there would most likely be only one dot on the perimeter of the circle (4, 3, 2, 1). The only option that shows this is B.
I hope this helps!
The external angle is suplementary to the internal angle close to it. We also know that the sum of all the internal angles of the triangle are equal to 180 degrees, this means that the angle "a" is suplementary to the sum of the angles "b" and "c". Through this logic, we can conclude that since:

Then we can conclude that:

Therefore the statement is true, the exterior angle is equal to the sum of its remote interior angles.
Let's use an example:
On this example, the external angle is 120 degrees, therefore the sum of the remote interior angles must also be equal to that. Let's try:

The sum of the remote interior angles is equal to the external angle.