(x, y) --> (x + 5, y - 1)
A(3, -1) --> A'(3 + 5, -1 - 1) --> A'(8, -2)
B(6, 1) --> B'(6 + 5, 1 -1) --> B'(11, 0)
C(2, 4) --> C'(2 + 5, 4 - 1) --> C'(7, 3)
D(-1, 3) --> D'(-1 + 5, 3 - 1) --> D'(4, 2)
Answer: Inconsistent
<u>Step-by-step explanation:</u>
y = 3x + 4 → m = 3, b = 4
y = 3x + 3 → m = 3, b = 3
These equations have the same slope but different y-intercepts so they are parallel lines <em>which means they will never intersect.</em>
NOTES
- one solution: consistent & independent <em>lines cross</em>
- infinite solutions: consistent & dependent <em>same line</em>
- no solution: inconsistent <em>parallel lines</em>
The variables are: x, y
The constant is: 4
The coefficients are: 5, 3
The exponent is: y^2
B is correct. The distance formula can be written correctly in several different ways. Examples:
sqrt( change in x)^2 + (change in y)^2 )
sqrt( (x2-x1)^2 + (y2-y1)^2 )
![\bf \textit{Logarithm Cancellation Rules} \\\\ \stackrel{\stackrel{\textit{we'll use this one}}{\downarrow }}{log_a a^x = x}\qquad \qquad a^{log_a x}=x~\hfill\stackrel{recall}{ln=log_e}\qquad log_e(e^z)=z \\\\[-0.35em] \rule{34em}{0.25pt}](https://tex.z-dn.net/?f=%20%5Cbf%20%5Ctextit%7BLogarithm%20Cancellation%20Rules%7D%20%5C%5C%5C%5C%20%5Cstackrel%7B%5Cstackrel%7B%5Ctextit%7Bwe%27ll%20use%20this%20one%7D%7D%7B%5Cdownarrow%20%7D%7D%7Blog_a%20a%5Ex%20%3D%20x%7D%5Cqquad%20%5Cqquad%20a%5E%7Blog_a%20x%7D%3Dx~%5Chfill%5Cstackrel%7Brecall%7D%7Bln%3Dlog_e%7D%5Cqquad%20log_e%28e%5Ez%29%3Dz%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%20)

and you plug that in your calculator to get about -0.27465307216702742285.