Answer:- 335 kcal of heat energy is produced.
Solution:- The balanced equation for the combustion of glucose in presence of oxygen to give carbon dioxide and water is:

From given info, 2803 kJ of heat is released bu the combustion of 1 mol of glucose. We need to calculate the energy produced when 3.00 moles of oxygen react with excess of glucose.
We could solve this using dimensional analysis as:

= 1401.5 kJ
Now, let's convert kJ to kcal.
We know that, 1kcal = 4.184kJ
So, 
= 335 kcal
Hence, 335 kcal of heat energy is produced by the use of 3.00 moles of oxygen gas.
 
        
             
        
        
        
Answer:
B) 7.7
Explanation:
For the reaction    Ag2CO3(s) + CrO42‒(aq) → Ag2CrO4(s) + CO32‒(aq)
Kc = (CO₃²⁻) / (CrO₄²⁻)
and the Ksp given are
Ag₂CO₃    ⇒  2 Ag⁺(aq) + CO₃²⁻(aq)    Ksp₁ = (Ag⁺)²(CO₃²⁻)  
Ag₂CrO₄   ⇒  2 Ag⁺(aq)+ CrO₄²⁻(aq)   Ksp₂ = (Ag⁺)²(CrO₄²⁻)
Where (...) indicate concentrations M
Notice if we divide the expressions for Ksp we get:
Ksp₁/Ksp₂ = (CO₃²⁻)  / (CrO₄²⁻) = 8.5 x 10⁻¹² / 1.1 x 10⁻¹² = 7.7
which is the desired answer.