The enthalpy of reaction for the combustion of ethane 2CH₃CH₃ + 7O₂ → 4CO₂ + 6H₂O calculated from the average bond energies of the compounds is -2860 kJ/mol.
The reaction is:
2CH₃CH₃ + 7O₂ → 4CO₂ + 6H₂O (1)
The enthalpy of reaction (1) is given by:
(2)
Where:
r: is for reactants
p: is for products
The bonds of the compounds of reaction (1) are:
- 2CH₃CH₃: 2 moles of 6 C-H bonds + 2 moles of 1 C-C bond
- 7O₂: 7 moles of 1 O=O bond
- 4CO₂: 4 moles of 2 C=O bonds
- 6H₂O: 6 moles of 2 H-O bonds
Hence, the enthalpy of reaction (1) is (eq 2):

Therefore, the enthalpy of reaction for the combustion of ethane is -2860 kJ/mol.
Read more here:
brainly.com/question/11753370?referrer=searchResults
I hope it helps you!
Answer:
32, 30 and 41
Explanation:
The problem here is to find the number of:
Protons, neutrons and electrons in Ge²⁺
In this ion,
We must understand that for a net positive charge to remain on an atom, the number of protons must be greater than the number of electrons.
Ge is Germanium with atomic number of 32;
So the number of protons is 32
Since the atom has lost two electrons;
Number of electrons now is 32 - 2 = 30
Number of neutrons is 41 from the periodic table.
Because they are coming from the ground and always safe
1 mole ------------ 6.02 x10²³ molecules
? mole ----------- 1.505 x10²³ molecules
1.505x10²³ / 6.02x10²³ => 0.25 moles
hope this helps!
Explanation:
When conducting a melting point experiment, if we were to heat a sample quickly. Large amount heat is provided instantly which would melt the crystals in the tube very quickly, even before the temperature of the thermometer reaches to that level. So the observes melting point would be much lower than the actual melting point when sample is heated slowly.