Answer:
The general equation for an exothermic reaction is: Reactants → Products + Energy.
<u>Answer:</u> The final temperature of water is 32.3°C
<u>Explanation:</u>
When two solutions are mixed, the amount of heat released by solution 1 (liquid water) will be equal to the amount of heat absorbed by solution 2 (liquid water)

The equation used to calculate heat released or absorbed follows:

......(1)
where,
q = heat absorbed or released
= mass of solution 1 (liquid water) = 50.0 g
= mass of solution 2 (liquid water) = 29.0 g
= final temperature = ?
= initial temperature of solution 1 = 25°C = [273 + 25] = 298 K
= initial temperature of solution 2 = 45°C = [273 + 45] = 318 K
c = specific heat of water= 4.18 J/g.K
Putting values in equation 1, we get:
![50.0\times 4.18\times (T_{final}-298)=-[29.0\times 4.18\times (T_{final}-318)]\\\\T_{final}=305.3K](https://tex.z-dn.net/?f=50.0%5Ctimes%204.18%5Ctimes%20%28T_%7Bfinal%7D-298%29%3D-%5B29.0%5Ctimes%204.18%5Ctimes%20%28T_%7Bfinal%7D-318%29%5D%5C%5C%5C%5CT_%7Bfinal%7D%3D305.3K)
Converting this into degree Celsius, we use the conversion factor:


Hence, the final temperature of water is 32.3°C
Answer:
Multiply the number of moles in the product by the molecular weight of the product to determine the theoretical yield.
Explanation:
For example:
If you created 0.5 moles of Aluminium Oxide the molecular weight of Aluminium Oxide is 101.96g/mole, so you would get 50.98g as the theoretical yield.
So multiply,..
101.96x0.5= 50.98
This is the correct way to calculate the theoretical yield
......
Answer: F. Electron pair acceptor
Explanation:
A Lewis acid can be properly defined as any substance such as H+ (hygrogen ion) that can accept a pair of electron.
While a Lewis base is any substance such as (OH-) that can donate a pair of electron.
In the neutralization reaction between an acid ( H+ ) and a base (OH-). Hydrogen ion (H+ ) is the Lewis acid because it accepts an electron pair from (OH-).
Other examples of Lewis acid are; Mg2+, K+