Your answer is going to be AC
Answer:
The correct order of increasing reactivity toward nucleophilic acyl substitution is E < D < C < A < F < B.
Explanation:
The stability of the leaving group best determines the manner of reactivity of carboxylates to nucleophilic substitution after the substitution of the nucleophile to the leaving group. The leaving group should, therefore, be protonated with hydrogen ion in the solution to form a stable molecule. From the given list: The leaving group for A, Ethyl thioacetate will be ethanethiol. For B, Acetyl chloride will be Hydrochloric acid. For C, Sodium acetate will be Sodium Hydroxide. For D, Ethyl acetate will be Ethanol. For E, Acetamide will be Ammonia, and for F, Acetic anhydride will be Ethanoic acid. The reactivity of the substitution reaction is dependent on the stability of these leaving groups. The stability of these leaving groups depends on their pKa, and the more the pKa, the lesser the acidity of the leaving group, and the lower the reactivity. Therefore, considering their pKa: A is 8.5, B is -7, C is 13.8, D is 15.9, E is 36, and F is 4.8. When we rearrange this pKa in descending order, we have E, D. C, A, F, B. Which is also the increased reactivity of the nucleophilic acyl substitution.
The tea was no longer hot or (brewed) so the 5th didn’t dissolve like the others because the tea was hot or warm enough anymore it cooled down. So the sugar won’t dissolve no more.
Its A. because it measures the rate of the decay of the isotope
Bioaccumulation refers to the accumulation of chemicals in a living organism. The compound or chemical accumulates at a rate faster than it is being metabolized or excreted by the organism. Chemicals bioaccumulate by binding to the proteins and fats in an organism while others bioaccumulate through the repeated consumption of contaminated organisms.
Pesticides containing chemicals that dissolve easily in fat but not in water tend to bioaccumulate. Pesticides that contain chemicals that can easily be metabolized by organisms do not bioaccumulate. In summary, the nature of the chemical used in pesticides and the capability of organisms to metabolize the said chemicals can dictate whether it will bioaccumulate or not.