Water, or H2O, is a compound composed of the elements hydrogen (H) and oxygen (O).
Answer:
Explanation: By adding base to a solution increases concentration of OH ions.
The enthalpy of the solution is <u>positive </u>and the entropy is <u>positive</u>.
Potassium trioxonitrate (V) KNO₃(s) is a strong oxidizing solid substance that when dissolved in water changes to aqueous solution.
In its aqueous solution state, the randomness of molecules increases as a result of that the entropy will also increase leading to the positive state of the entropy.
Similarly, provided that the solution becomes quite cold to the touch, the enthalpy is also in it positive state.
Therefore, we can conclude that the enthalpy of the solution is <u>positive </u>and the entropy is <u>positive</u>.
Learn more about Potassium trioxonitrate (V) KNO₃(s) here:
brainly.com/question/25303112
Answer:
The outer core is the only layer that is liquid. It is also mainly made from nickel and iron. The main job of the outer core is that it's responsible for the Earth's magnetic field. As the earth spins, the liquid inside this layer spins aswell, keeping it balanced.
The trick for this problem is to understand atomic mass: the fact that different atoms have different masses. What we need to do is add up all the atomic masses of the compound and work out the ratio of mass of water to the mass of sodium carbonate. Atomic masses are often given for each atom in the periodic table, but you can look them up on google too.
You can do this by adding up individual atoms for each molecule, or you can shortcut and lookup the molar mass of the compound (i.e.the task already done for you).
The molar mass of water is 18.01g/mole so for 10 moles of water we have a mass of 180.1g.
The molar mass of sodium carbonate is 106g/mole (google).
So the total mass of the sodium carbonate decahydrate compound is 180.1+106 = 286.1g, of which water would make up 180.1g, so the percentage of water is is 180.1/286.1 = 0.629, so we can round this to 63%
:)