D. Cell membrane: surrounds a cell and allows substances to pass in and out
Answer:
Diffusion occurs in solid and liquid through the constant and random motion of the smaller particles called molecules of either solid, liquid or gaseous in permeable medium as witnessed in the experiment.
Explanation:
The kinectic molecular theory of matter states that the smaller particles of matters called molecules are in constant, but random motion and the degree of movement of the molecules depends on the state or phase such matter exist, which is a derivative of the total kinetic energy possessed by the molecules. This average kinetic energy of the molecules as iodine for example is proportional to the temperature of the matter.
Diffusion should be remembered as the movement of molecules of matters from a highly concentrated region otherwise called hypertonic region to a less concentrated region called hypotonic region through a permeable medium until there is an equilibrium in the system. Since diffusion is expected to involve the movement of molecules, and any matter that can exhibit diffusion is said to have moving molecules, therefore, the kinetic molecular theory of matter is proven to be accurate with the observed movement of iodine molecules in the test tube. This shows that even the molecules of solid matters are in constant random motion, this is made more convincing when these molecules migrate without the addition of external energy source like heat, which then help to understand that the natural iodine molecules are in constant random motion, as they are changed to gaseous state without passing through liquid state, a phenomenon called sublimation.
The given question is incomplete. The complete question is :
Gaseous butane reacts with gaseous oxygen gas to produce gaseous carbon dioxide and gaseous water . If 1.31g of water is produced from the reaction of 4.65g of butane and 10.8g of oxygen gas, calculate the percent yield of water. Be sure your answer has the correct number of significant digits in it.
Answer: 28.0 %
Explanation:
To calculate the moles :


According to stoichiometry :
13 moles of
require 2 moles of butane
Thus 0.34 moles of
will require=
of butane
Thus
is the limiting reagent as it limits the formation of product and butane is the excess reagent.
As 13 moles of
give = 10 moles of 
Thus 0.34 moles of
give =
of 
Mass of 


The percent yield of water is 28.0 %
Answer: 109.2g
Explanation:
1 mole N2O = 34 g
46.4g = 46.4/34 moles = 1.365 moles
1 mole N2O is from 1 mole NH4NO3
1.365 moles NH4NO3 = 1.365*80g = 109.2g
Answer:
0.019 g.
Explanation:
- Firstly, we need to find the no. of moles of oxygen gas:
- We can use the general law of ideal gas: <em>PV = nRT.
</em>
where, P is the pressure of the gas in atm (P = 1.02 atm).
V is the volume of the gas in L (V = 15.0 L).
n is the no. of moles of the gas in mol (n = ??? mol).
R is the general gas constant (R = 0.0821 L.atm/mol.K),
T is the temperature of the gas in K (T = 28°C + 273 = 301.0 K).
∴ n = PV/RT = (1.02 atm)(15.0 L)/(0.0821 L.atm/mol.K)(301.0 K) = 0.62 mol.
- To find the mass of oxygen gas, we have:
<em>no. of moles = mass/molar mass.</em>
<em></em>
∴ mass of oxygen = (no. of moles)(molar mass) = (0.62 mol)(32.0 g/mol) = 0.019 g.