Answer:
![K=\frac{[CaO][CH_{4}][H_{2}O ]^{2} }{[CaCO_{2}][H_{2}]^4 }](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B%5BCaO%5D%5BCH_%7B4%7D%5D%5BH_%7B2%7DO%20%5D%5E%7B2%7D%20%20%7D%7B%5BCaCO_%7B2%7D%5D%5BH_%7B2%7D%5D%5E4%20%20%7D)
Explanation:
The equilibrium expression is the K value equal to the product of the concentrations of the products over the product of the concentrations of the reactants. If there is a coefficient in front of the compound, raise the molecule to that power.
Since K is big, more product is expected. This is because of mathematic principles. A large numerator with a small denominator will produce a large number.
Answer:
In He2 molecule,
Atomic orbitals available for making Molecular Orbitals are 1s from each Helium. And total number of electrons available are 4.
Molecular Orbitals thus formed are:€1s2€*1s2
It means 2 electrons are in bonding molecular orbitals and 2 are in antibonding molecular orbitals .
Bond Order =Electrons in bonding molecular orbitals - electrons in antibonding molecular orbitals /2
Bond Order =Nb-Na/2
Bond Order =2-2/2=0
Since the bond order is zero so that He2 molecule does not exist.
Explanation:
3.44x10^2
you move the decimal over to get a single digit number with change. The number of times you move the decimal is the number for the 10 power
Balancing of chemical equation is essential because of the law of conservation of mass, which states that the mass of a system can not be created or removed.
The second equation is balanced
This is because the number of elements of each atom in the product side equal the number of elements of each atom on the reactant side.
The first equation is not balanced

This is because there is 1 molecule of
on reactant side as compared to 3 molecules of 
To balance the equation we add a coefficient of 3 on sulphuric acid (
) and a coefficient of 3 on hydrogen (
)
