1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
atroni [7]
3 years ago
12

Difference between incident ray and reflected ray​

Physics
1 answer:
SSSSS [86.1K]3 years ago
3 0

Answer:

An incident ray is a ray of light that strikes a surface. The angle between this ray and the perpendicular or normal to the surface is the angle of incidence.

The reflected ray corresponding to a given incident ray, is the ray that represents the light reflected by the surface. The angle between the surface normal and the reflected ray is known as the angle of reflection. The Law of Reflection says that for a specular (non-scattering) surface, the angle of reflection always equals the angle of incidence.

You might be interested in
The mean diameters of Mars and Earth are 6.9 ✕ 103 km and 1.3 ✕ 104 km, respectively. The mass of Mars is 0.11 times Earth's mas
Roman55 [17]

Answer:

(a) Ratio of mean density is 0.735

(b) Value of g on mars 0.920 m,/sec^2

(c) Escape velocity on earth is 3.563\times 10^4m/sec

Explanation:

We have given radius of mars R_{mars}=6.9\times 10^3km=6.9\times 10^6m and radius of earth R_{E}=1.3\times 10^4km=1.3\times 10^7m

Mass of earth M_E=5.972\times 10^{24}kg

So mass of mars M_m=5.972\times\times 0.11 \times 10^{24}=0.657\times 10^{24}kg

Volume of mars V=\frac{4}{3}\pi R^3=\frac{4}{3}\times 3.14\times (6.9\times 10^6)^3=1375.357\times 10^{18}m^3

So density of mars d_{mars}=\frac{mass}{volume}=\frac{0.657\times 10^{24}}{1375.357\times 10^{18}}=477.69kg/m^3

Volume of earth  V=\frac{4}{3}\pi R^3=\frac{4}{3}\times 3.14\times (1.3\times 10^7)^3=9.198\times 10^{21}m^3

So density of earth d_{E}=\frac{mass}{volume}=\frac{5.972\times 10^{24}}{9.198\times 10^{21}}=649.271kg/m^3

(A) So the ratio of mean density \frac{d_{mars}}{d_E}=\frac{477.69}{649.27}=0.735

(B) Value of g on mars

g is given by g=\frac{GM}{R^2}=\frac{6.67\times 10^{-11}\times0.657\times 10^{24}}{(6.9\times 10^6)^2}=0.920m/sec^2

(c) Escape velocity is given by

v=\sqrt{\frac{2GM}{R}}=\sqrt{\frac{2\times 6.67\times 10^{-11}\times 0.657\times 10^{24}}{6.9\times 10^6}}=3.563\times 10^4m/sec

5 0
4 years ago
Read 2 more answers
One uniform ladder of mass 30 kg and 10 m long rests against a frictionless vertical wall and makes an angle of 60o with the flo
yuradex [85]

Answer:

   μ = 0.37

Explanation:

For this exercise we must use the translational and rotational equilibrium equations.

We set our reference system at the highest point of the ladder where it touches the vertical wall. We assume that counterclockwise rotation is positive

let's write the rotational equilibrium

           W₁  x/2 + W₂ x₂ - fr y = 0

where W₁ is the weight of the mass ladder m₁ = 30kg, W₂ is the weight of the man 700 N, let's use trigonometry to find the distances

             cos 60 = x / L

where L is the length of the ladder

              x = L cos 60

            sin 60 = y / L

           y = L sin60

the horizontal distance of man is

            cos 60 = x2 / 7.0

            x2 = 7 cos 60

we substitute

         m₁ g L cos 60/2 + W₂ 7 cos 60 - fr L sin60 = 0

         fr = (m1 g L cos 60/2 + W2 7 cos 60) / L sin 60

let's calculate

         fr = (30 9.8 10 cos 60 2 + 700 7 cos 60) / (10 sin 60)

         fr = (735 + 2450) / 8.66

         fr = 367.78 N

the friction force has the expression

         fr = μ N

write the translational equilibrium equation

         N - W₁ -W₂ = 0

         N = m₁ g + W₂

         N = 30 9.8 + 700

         N = 994 N

we clear the friction force from the eucacion

        μ = fr / N

        μ = 367.78 / 994

        μ = 0.37

3 0
3 years ago
What causes glowsticks to give off light?
iren2701 [21]
Phenyl oxalate ester is responsible for the luminescence in aglow stick<span>. The reaction with hydrogen peroxide </span>causes<span> the liquid inside a </span><span>glow stick to glow</span>
3 0
3 years ago
In one cycle a heat engine absorbs 450 J from a high-temperature reservoir and expels 290 J to a low-temperature reservoir. If t
Vitek1552 [10]

Answer:

So the ratio will be \frac{T_L}{T_H}=-0.171

Explanation:

We have given heat engine absorbs 450 joule from high temperature reservoir

So Q=450j

As the heat engine expels 290 j

So work done W = 290 J

We know that efficiency \eta =\frac{W}{Q}=\frac{290}{450}=0.6444

It is given that efficiency of the engine only 55 % of Carnot engine

So efficiency of Carnot engine =\frac{0.6444}{0.55}=1.171

Efficiency of Carnot engine is \eta =1-\frac{T_L}{T_H}

1.171 =1-\frac{T_L}{T_H}

\frac{T_L}{T_H}=-0.171

3 0
4 years ago
Read 2 more answers
While spending the weekend in your cabin, you burn wood in your pot-bellied stove to heat a kettle of water for tea.
Olegator [25]

Answer: 1 = Heat

2=gas

3=it gets hot enough to boil because the metal conducts the heat into the water to heat it up and eventually boil.

Explanation: its common sense

3 0
3 years ago
Other questions:
  • 5. An undisturbed soil sample has a wet density of 2.5 Mg/m3 when the water content is 25%. The specific gravity of the soil par
    6·1 answer
  • Which of the following best represents a decomposition reaction?
    8·1 answer
  • 1. a) What is the weight of a 20.0 kg girl on earth?
    15·1 answer
  • An electron moving horizontally enters a redion whre a constant manetic fiedld B exists posinit upward. What is tge direction of
    12·1 answer
  • All of the celestial bodies of the solar system were said to have formed from -a nebular cloud of dust and gas -the protostar -d
    5·2 answers
  • What do refrigerators and air conditioners use to move heat?
    9·2 answers
  • When can thermal energy in a system move from lower to higher temperatures?
    6·1 answer
  • A student uses an audio oscillator of adjustable frequency to measure the depth of a water well. The student reports hearing two
    7·1 answer
  • A light wave has a frequency of <img src="https://tex.z-dn.net/?f=%286%20%5Ctimes%20%7B10%7D%5E%7B8%7D%29." id="TexFormula1" tit
    13·2 answers
  • A merry go round has rotational inertia (moment of inertia) of 73.0 kg/m^2 and is rotating at a constant speed of 30.0 rads./sec
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!