The quantity that has a magnitude of zero when the ball is at the highest point in its trajectory is
the vertical velocity.
In fact, the motion of the ball consists of two separate motions:
- the horizontal motion, on the x-axis, which is a uniform motion with constant velocity

, where

- the vertical motion, on the y-axis, which is a uniformly accelerated motion with constant acceleration

directed downwards, and with initial velocity

. Due to the presence of the acceleration g on the vertical direction (pointing in the opposite direction of the initial vertical velocity), the vertical velocity of the ball decreases as it goes higher, up to a point where it becomes zero and it reverses its direction: when the vertical velocity becomes zero, the ball has reached its maximum height.
Answer:
(a) Z = 48.3 Ω
(b) cos ∅ = 0.455
(c) Irms = 10.35 A
(d) C = 74.02 μF
(e) Irms = 4.44 A
Explanation:
Power (P) = 2.36 kW
Frequency (f) = 50 Hz
RMS Voltage (Vrms) = 500 V
Resistance (R) = 22 Ω
Inductive Reactance (XL) = 43 Ω
(a) to calculate the total impedance, use the formula:
Z = √(R² + XL²)
= √((22)² + (43)²)
= √2333
Z = 48.3 Ω
(b) To calculate the plant's power factor, we will use the formula:
cos ∅ = R/Z
= 22/48.3
cos ∅ = 0.455
(c) To calculate the RMS current used by the plant, divide the RMS voltage value by the impedance of the plant.
Irms = Vrms/Z
= 500/48.3
Irms = 10.35 A
(d) For the power factor to become unity, the inductive reactance must be equal to the capacitive reactance i.e. Xc = XL
Xc = XL
1/(2πfC) = XL
1/(2πfXL) = C
C = 1/(2π*50*43)
= 7.402 x 10⁻⁵
C = 74.02 μF
(e) P = Vrms*Irms*cos∅
Irms = P/Vrms*cos∅
= 2.22 x 10³/500*1
Irms = 4.44 A
Answer:
hello I don't know the answer sorry next time I will try
The amplitude of a wave corresponds to its maximum oscillation of the wave itself.
In our problem, the equation of the wave is
![y(x,t)= (0.750cm)cos(\pi [(0.400cm-1)x+(250s-1)t])](https://tex.z-dn.net/?f=y%28x%2Ct%29%3D%20%280.750cm%29cos%28%5Cpi%20%5B%280.400cm-1%29x%2B%28250s-1%29t%5D%29)
We can see that the maximum value of y(x,t) is reached when the cosine is equal to 1. When this condition occurs,

and therefore this value corresponds to the amplitude of the wave.
The new gravitational attraction will be 1/4 as much
Explanation:
The magnitude of the gravitational force between two objects is given by
where
is the gravitational constant
m1, m2 are the masses of the two objects
r is the separation between them
In this problem, the original force between the two objects is F, when they are separated by a distance r.
Later, the distance between the two objects is doubled, so the new distance is

Therefore, the new force will be

Therefore, the new force will be one-fourth as much.
Learn more about gravitational force:
brainly.com/question/1724648
brainly.com/question/12785992
#LearnwithBrainly