Answer and Explanation:
Most of the distances in the galaxy are measured in light years instead of meter because the distances in galaxy are very large and it is very difficult to measure in meters and light year is the largest unit of distance so it is very easy to measure large distances in light year so we prefer light year instead of meters for measuring distances in galaxy.
The answer is c. +2.0 µC
To calculate this, we will use Coulomb's Law:
F = k*Q1*Q2/r²
where F is force, k is constant, Q is a charge, r is a distance between charges.
k = 9.0 × 10⁹ N*m/C²
It is given:
F = 7.2 N
d = 0.1 m = 10⁻¹ m
Q1 = -4.0 µC = 4 * 1.0 × 10⁻⁶ = 4.0 × 10⁻⁶
Q2 = ?
Thus, let's replace this in the formula for the force:
7.2 = 9.0 × 10⁹ * 4.0 × 10⁻⁶ * Q2/(10⁻¹)²
7.2 = 9 * 4 * 10⁹⁻⁶ * Q2/10⁻¹°²
7.2 = 36 × 10³ * Q2 / 10⁻²
Multiply both sides of the equation by 10⁻²:
7.2 × 10⁻² = 36 × 10³ * Q2
⇒ Q2 = 7.2 × 10⁻² / 36 × 10³ = 7.2/36 × 10⁻²⁻³ = 0.2 × 10⁻⁵ = 2 × 10⁻⁶
Since µC = 1.0 × 10^-6:
Q2 = 2 * 1.0 × 10^-6 = 2 µC
It is not possible to explain the interaction of the rod and pieces of paper as a gravitational interaction.
<h3>What is Gravitational interaction?</h3>
This is defined as the interaction between a particle or body resulting from their mass. This type of interaction is usually weak and occurs in all distances possible.
It is not gravitational interaction, because the rod attracts paper only against the gravitational force of the earth and there is no attraction between both bodies under a different condition.
This is therefore the reason why it is not possible to explain the interaction of the rod and pieces of paper as a gravitational interaction.
Read more about Gravitational interaction here brainly.com/question/25624188
#SPJ1
Wood i think could be wrong
Answer:
KE = 250 kg/m/s
Explanation:
use the formula: KE = 1/2 m (v^2)
KE = 1/2 (5) (10^2)
KE = (2.5) (100)
KE = 250 kg/m/s