Answer:
original mass of the block of ice is 38.34 gram
Explanation:
Given data
cup mass = 150 g
ice temperature = 0°C
water mass = 210 g
water temperature = 12°C
ice melt = 2 gram
to find out
solution
we know here
specific heat of aluminum is c = 0.900 joule/gram °C
Specific heat of water C = 4.186 joule/gram °C
so here temperature difference is dt = 12- 0 = 12°C
so here heat lost by water and cup are given by
heat lost = cup mass × c × dt + water mass × C × dt
heat lost = 150 × 0.900 × 12 + 210 × 4.186 × 12
heat lost = 12168.72 J
so
mass of ice melt here = heat lost / latent heat of fusion
here we know latent heat of fusion = 334.88 joule/gram
so
mass of ice melt = 12168.72 / 334.88
mass of ice melt is 36.337554 gram
so mass of ice is here = mass of ice melt + ice melt
mass of ice = 36.337554 + 2
mass of ice = 38.337554 gram
so original mass of the block of ice is 38.34 gram
Answer:
Velocity = 0.5 m/s South (A)
Explanation:
You need to determine the average rate of velocity.
The equation you will use is velocity = displacement/time
The displacement is 30m South.
The time is 60 seconds.
Plug into the equation Velocity = 30m South/60 s
Velocity = 0.5 m/s South
Potential energy is energy that is found in a system, grounded on the position of objects. The Coulomb (C) is the unit of charge, and the unit of electric potential is the Volt (V), which is equivalent to (J/C) or Joule per Coulomb.So the formula for this is potential = kQ / d, plugging in the given from the questions will give us:potential = 8.99e9N·m²/C² * 1.602e-19C / 0.053e-9m = 27 V
Answer:
<h3>The answer is 7 Pa</h3>
Explanation:
The pressure transmitted in the hydraulic system can be found by using the formula

f is the force
a is the area
From the question we have

We have the final answer as
<h3>7 Pa</h3>
Hope this helps you
(A)
Explanation:
We can see that the resistors are connected in parallel so all of them have the same voltage of 100 V. We also know that

Since resistor Y dissipates 100 W of power, we can solve for the current as
