Mars Global Surveyors (MGS) and later orbiters found the following minerals on the Martian surface;
- Carbonate
- Sulfates
- Iron oxide
The Mars Global Surveyors (MGS) and later orbiters suggest that the Martian crust contains a higher percentage of volatile elements such as Sulphur and chlorine than the Earth's crust does.
These scientists also conclude that the most abundant chemical elements in the Martian crust are those found in Igneous rock.
These elements include the following;
- Silicon,
- Oxygen,
- Iron,
- Magnesium,
- Aluminum,
- Calcium, and
- Potassium.
They also, suggest that hydrogen is found in ice (water) while carbon is found in carbon dioxide and carbonates.
From the given options the minerals found in Martian surface include;
- Phyllosilicates ------ these are sheet of silicate minerals
- Carbonate
- Sulfates
- iron oxide
Learn more here: brainly.com/question/20470323
Answer: Wavelength is the measure of the length of a complete wave cycle. The velocity of a wave is the distance traveled by a point on the wave. In general, for any wave the relation between Velocity and Wavelength is proportionate. It is expressed through the wave velocity formula.
Explanation: For any given wave, the product of wavelength and frequency gives the velocity. It is mathematically given by wave velocity formula written as-
V=f×λ
Where,
V is the velocity of the wave measure using m/s.
f is the frequency of the wave measured using Hz.
λ is the wavelength of the wave measured using m. Velocity and Wavelength Relation
Amplitude, Frequency, wavelength, and velocity are the characteristic of a wave. For a constant frequency, the wavelength is directly proportional to velocity.
Given by:
V∝λ
Example:
For a constant frequency, If the wavelength is doubled. The velocity of the wave will also double.
For a constant frequency, If the wavelength is made four times. The velocity of the wave will also be increased by four times.
Hope you understood the relation between wavelength and velocity of a wave. I truely hope this helps you out tho! Goodluck!
Answer: A) mass on earth surface = 5.91kg
B) mass on surface of jupiter = 5.91kg
C) weight on surface of jupiter = 10.697N
Explanation:
The relationship between weight (W), mass (m) and acceleration due gravity (g) is given below
W=mg
From the question, g= 9.8m/s² and weight on the surface on the earth is 58N
A) The mass of watermelon on earth is
m = 58/ 9.8 = 5.91kg
B) the mass of the watermelon on jupiter is 5.91kg.
You will notice this is the same as the mass of watermelon on earth and that is so because mass is a scalar quantity that does not depends on the distance away from the center of the earth (unlike weight which is a vector) thus making it constant all through any location.
C) mass of watermelon is 5.91kg, g=9.8m/s² weight of watermelon on jupiter is given below as
W = mg
W = 5.91 x 9.8
= 10.697N.
The average speed of the whole travel is equal to <u>400 mph</u>.
Why?
From the statement, we know that whole travel is divided into three parts. For the first part (traveling from New York to Chicago), we have that it was 3.25 hours and the covered distance was half of the total distance (1400mi). For the second part, we have that it was 1 hour (layover time), and the covered no distance. For the third part (traveling from Chicago to Los Angeles), we have that it was 2.75 hours, and it took the other half of the total distance (1400mi).
We can calculate the average speed of the whol travel using the following formula:

Now, substituting and calculating, we have:


Hence, we have the average speed of the whole travel is equal to 400 mph.
Have a nice day!
A) 0.189 N
The weight of the person on the asteroid is equal to the gravitational force exerted by the asteroid on the person, at a location on the surface of the asteroid:

where
G is the gravitational constant
8.7×10^13 kg is the mass of the asteroid
m = 130 kg is the mass of the man
R = 2.0 km = 2000 m is the radius of the asteroid
Substituting into the equation, we find

B) 2.41 m/s
In order to orbit just above the surface of the asteroid (r=R), the centripetal force that keeps the astronaut in orbit must be equal to the gravitational force acting on the astronaut:

where
v is the speed of the astronaut
Solving the formula for v, we find the minimum speed at which the astronaut should launch himself and then orbit the asteroid just above the surface:
