Answer:
The west component of the given vector is - 42.548 meters.
Explanation:
We need to translate the sentence into a vectoral expression in rectangular form, which is defined as:

Where:
- Horizontal component of vector distance, measured in meters.
- Vertical component of vector distance, measured in meters.
Let suppose that east and north have positive signs, then we get the following expression:
![(x, y) = (-45\cdot \cos 19^{\circ}, -45\cdot \sin 19^{\circ})\,[m]](https://tex.z-dn.net/?f=%28x%2C%20y%29%20%3D%20%28-45%5Ccdot%20%5Ccos%2019%5E%7B%5Ccirc%7D%2C%20-45%5Ccdot%20%5Csin%2019%5E%7B%5Ccirc%7D%29%5C%2C%5Bm%5D)
![(x, y) = (-42.548,-14.651)\,[m]](https://tex.z-dn.net/?f=%28x%2C%20y%29%20%3D%20%28-42.548%2C-14.651%29%5C%2C%5Bm%5D)
The west component corresponds to the first component of the ordered pair. That is to say:

The west component of the given vector is - 42.548 meters.
Answer: hes not a country singer if thats what your asking
Explanation:
The direction of the magnetic force on the wire is west.
The magnetic force acting on the moving protons acts northward in the horizontal plane. If the thumb is up (current flows vertically up), the wrapped finger will be counterclockwise.
Therefore, the direction of the magnetic field is counterclockwise. Here, the magnetic field is pointing upwards (vertical magnetic field) and the electrons are moving east. Applying Fleming's left-hand rule here, we can see that the direction of force is along the south direction.
As the change in magnetic flux increases upwards, Lenz's law indicates that the induced magnetic field of the induced current must resist and the inside of the loop must be directed downwards. Using the right-hand rule, we can see that a clockwise current is induced.
Learn more about the magnetic fields here: brainly.com/question/7802337
#SPJ4
What if I don’t give you the answer