F = ma
F = (1000 kg)•(5 m/s^2)
F = 5000 N
Answer:
Let f be force of friction on the blocks kept on inclined plane. T be tension in the string
For motion of block on the inclined plane in upward direction
T - m₁gsin40 - f = m₁a
f = μ m₁gcos40
For motion of hanging block on in downward direction
m₂g - T = m₂ a
Adding to cancel T
m₂g - - m₁gsin40 - μ m₁gcos40 = a ( m₁+m₂ )
a = g (m₂ - - m₁sin40 - μ m₁cos40) / ( m₁+m₂ )
Putting the values
a = 9.8 ( 4.75 - 2.12-1.045) / 7.6
2.04 m s⁻²
M₂ will go down and M₁ will go up with acceleration .
Explanation:
The correct answer is c. The process of deposition causes rock and soil to be slowly gained. Deposition is a geological process in which soil and rocks are added to a landform.
Based on the options given, the answer is two waves subtract from each other. Destructive interference happens when two waves meet each other however with different frequencies cancel each other out.
Thank you for your question. Please don't hesitate to ask in Brainly your queries.
Answer:
15/f s
Explanation:
The refractive index n = 1.5 of the glass is n = λ₁/λ₂ where λ₁ = wavelength of monochromatic light in vacuum = L/10 and λ₂ = wavelength of monochromatic laser in glass.
So, λ₂ = λ₁/n.
We know the speed of light in glass, v = fλ₂ and λ₂ = v/f.
The light covers a distance d = L in time, t = d/v (since v = d/t)
So, the time it takes the pulse of light to travel from one end of the glass to the other is t = d/v = L/fλ₂ = L/fλ₁/n = nL/fλ₁ = nL/fL/10 = 10 × 1.5/f = 15/f s
So, the time it takes the pulse of light to travel from one end of the glass to the other is t = 15/f s