1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mart [117]
3 years ago
12

If two objects are in thermal equilibrium, do they have the same thermal or internal energy?

Physics
1 answer:
Tpy6a [65]3 years ago
7 0

Answer:

Yes, they do have the same internal energy.

Explanation:

The thermal balance refers to when there is no heat transfer between the bodies and their surroundings i.e. the bodies and the environment are at the same temperature.

Suppose two bodies of different masses and different materials, each one of them is at a temperature of 25(° C), which is the same temperature as the temperature of the environment, if these two bodies are close to each other, there is also heat transfer as they are at the same temperature, in the absence of any type of energy that enter or exit in these bodies, the amount of internal energy will be equal in both bodies.

Note: when the internal energy of one of these bodies is increased, heat transfer will happen, always looking for the thermal balance.

You might be interested in
A time-dependent but otherwise uniform magnetic field of magnitude B0(t) is confined in a cylindrical region of radius 6.5 cm. I
vodka [1.7K]

Answer:

a = 603.59 m/s^2

Explanation:

from the data given . the rate of change in magnetic field is as follow

\frac{dB}{dt} = 280 G/s = 280 \times 10^{-4} T/s

from the faraday's law of induction , the expression for the induced emf in region of radius r as follow

\epsilon = \frac{d \phi}{dt}

\int E.dl = \frac{d(BA)}{dt}

E(2\pi r)= \pi r^2 \frac{dB}{dt}

E = \frac{r}{2} \frac{dB}{dt}

electric field at point P_1 as follow

E = \frac{r}{2} \frac{dB}{dt}

E = \frac{1.5\times 10^{-2}}{2} 280 \times 10^{-4}

E = 6.3\times 10^{-6} V/m

from newton 2nd law of motion, the acceleration of proton is

F = ma

qE = ma

a = \frac{qE}{m}

a = \frac{1.6 \times 10^{-19} (6.3\times 10^{-6})}{1.67\times 10^{-27}}

a = 603.59 m/s^2

5 0
3 years ago
E<br> 3.6 What force is needed to give a mass of<br> 20 kg an acceleration of 5 m/s??
luda_lava [24]

Explanation:

  • Mass(m)= 20kg
  • Acceleration (a)= 5m/s²
  • Force(F)= ?

We know that,

  • F=ma
  • F=20×5
  • F=100N

Hence, the needed force is 100N.

6 0
2 years ago
Read 2 more answers
Which elements do not usually interact with other elements?
d1i1m1o1n [39]
Noble gasses ( insert gases)
7 0
3 years ago
Read 2 more answers
A rock with density 1900 kg/m3 is suspended from the lower end of a light string. When the rock is in air, the tension in the st
wel

Answer:

the tension T2 when the rock is completely immersed is T2 =  29.05 N

Explanation:

from Newton's second law

F= m*a

where F= force , m= mass , a= acceleration

when the rock is suspended ,a=0 since it is at rest. Then

T1 - m*g = 0 , T1= tension when suspended in air , g= gravity

assuming constant density of the rock

m= ρ rock *V , where  ρ rock = density of the rock , V= volume

thus

T1= m*g = ρ rock *g*V

V=  T1/(ρ rock *g)

when the rock is submerged in oil , it receives an upward force that equals the weight of the volume of displaced oil (V displaced). Since it is completely submerged the volume displaced is the volume of the rock V=Vdisplaced  

When the rock is at rest , then

F= m*a=0

T2 + ρ oil *g*V displaced - ρ rock *g*V  =0

T2 = ρ rock *g*V - ρ oil *g*V = g*V (ρ rock - ρ oil)

T2 = g*V (ρ rock - ρ oil) = T1/(ρ rock *g) *g * (ρ rock - ρ oil)

T2 = T1 * (ρ rock - ρ oil)/ρ rock

replacing values

T2 = 48 N * (1900 kg/m3- 750 kg/m3)/ 1900 kg/m3 = 29.05 N

T2 =  29.05 N

3 0
3 years ago
An open-topped freight car with mass 24,000 kg is coasting without friction along a level track. It is raining very hard, and th
skelet666 [1.2K]

Answer:

(a) v = 3..6 m/s

(b) The rain falling downward has been able to affect the horizontal motion of the car by reducing it's velocity from 4 m/s to 3.6 m/s.

Explanation:

from the question we have the following:

mass of the car (Mc) = 24,000 kg

initial velocity of the car (u) = 4 m/s

mass of water (Mw) = 3000 kg

final velocity of the car (v) = ?

(a) we can calculate the final momentum of the car by applying the conservation of momentum where

initial momentum = final momentum

Mc x U = (Mc + Mw) x V

24000 x 4 = (24000 + 3000) x v

96,000 = 27000v

v =3.6 m/s

(b) The rain falling downward has been able to affect the horizontal motion of the car by reducing it's velocity from 4 m/s to 3.6 m/s.

7 0
3 years ago
Other questions:
  • Your annoying little brother is dropping rocks out of his bedroom window on the 2nd floor. You are on the ground floor and watch
    11·1 answer
  • An ideal air-filled parallel-plate capacitor has round plates and carries a fixed amount of equal but opposite charge on its pla
    7·1 answer
  • 4. A tankful of liquid has a volume<br>of 0.2m3. What is the volume in (a)<br>lities (b) cm3 (c)ml​
    6·1 answer
  • A student ties down one end of a length of rope, then moves the other end back and forth rapidly. The wave that results in the r
    12·2 answers
  • Which type of plate boundary is most closely associated with the formation of new ocean floor?
    11·1 answer
  • a metal bar 70cm long and 4.00 kg in mass supported on two knief -edge placed 10 cm from each end. a 6.00 kg weight is suspended
    9·2 answers
  • Which of the following describes the bending of light due to a change in its speed?
    13·2 answers
  • A plane traveled 500 miles east and landed in Arizona. then it traveled another 500 miles east and lands in California. The enti
    15·1 answer
  • Which material BEST allows electricity to pass through it?
    11·1 answer
  • In which situation would alley cropping be most useful for sustainable farming?(1 point)
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!