Why don't you first try to use the cosine law to solve for an angle and then make use of the sin law to solve for the remaining angles.
Cosine law
C^2 = A^2 + B^2 - 2AB(cos C)
Solve for cos C, and then take the inverse of the trig ratio to solve for the angle.
Then set up a proportion like you have done using the sin law and solve for another angle. Knowing the sum of all angles in a triangle add up to 180 degrees, we can easily solve for the remaining angle.
Answer:
Step-by-step explanation:
Data given and notation
represent the sample mean
represent the sample standard deviation for the sample
sample size
represent the value that we want to test
represent the significance level for the hypothesis test.
t would represent the statistic (variable of interest)
represent the p value for the test (variable of interest)
State the null and alternative hypotheses.
We need to conduct a hypothesis in order to check if the mean weight is less than 4 ounces, the system of hypothesis would be:
Null hypothesis:
Alternative hypothesis:
If we analyze the size for the sample is < 30 and we don't know the population deviation so is better apply a t test to compare the actual mean to the reference value, and the statistic is given by:
(1)
t-test: "Is used to compare group means. Is one of the most common tests and is used to determine if the mean is (higher, less or not equal) to an specified value".
Calculate the statistic
We can replace in formula (1) the info given like this:
3 dollars pound because since it is 3/4 you can do: 2.25/3 and get 0.75. Thus means 0.75 is 1/4 a pound. 0.75 x 4 will get you dollars for pound. So 3
Answer:
I m not sure, I can't see
Step-by-step explanation: