1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
stepan [7]
3 years ago
12

Find the midpoint of points A(9,9) and B(2,-1)

Mathematics
1 answer:
Sholpan [36]3 years ago
7 0

Answer:

4 11/2

Step-by-step explanation:(X₁, Y₁) is the coordinates of the 1st point and (X₂, Y₂) is the coordinates of the 2nd point.

Using the formula above,.

You might be interested in
Find the volume of this cylinder give your answer to 1dp 20cm 9cm
vlada-n [284]

Answer:

this is a required answer.

5 0
2 years ago
Jason has 9 Orange balloons he gave Mike 8 of the balloons how many Orange balloons does he now have ​
murzikaleks [220]

Answer: he has 1 orange balloon

Step-by-step explanation:

8 0
3 years ago
Read 2 more answers
A young boy has 40 total pets. He has two different types of pets. He has cats and penguins. The total number of the heads of hi
Nina [5.8K]

Answer:

He has 30 penguins and 10 cats.

Step-by-step explanation:

Let's define the variables:

C =  number of cats.

P = number of penguins.

We know that he has a total of 40 pets, then:

C + P = 40

We also know that the total heads (40 heads, each animal has one) plus the number of wings (P*2, each penguin has 2) is equal to the number of feet of his pets (4*C + 2*P, because each cat has 4 paws, and each penguin has 2)

Then we have the equation:

40 + 2*P = 4*C + 2*P

Notice that in the second equation we have the term 2*P in both sides of the equation, then we can just subtract 2*P in both sides to get:

(40 + 2*P) - 2*P = 4*C + 2*P - 2*P

40 = 4*C

Now with this, we can find the value of C.

40/4 = C = 10

Then he has 10 cats.

Now we can replace this in the equation:

P + C = 40

to find the value of P

P + 10 = 40

P = 40 - 10 = 30

P = 30

He has 30 penguins.

3 0
3 years ago
5(y +2/5) = -13
Stells [14]

Answer:

y=-15

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
For what value of a should you solve the system of elimination?
SIZIF [17.4K]
\begin{bmatrix}3x+5y=10\\ 2x+ay=4\end{bmatrix}

\mathrm{Multiply\:}3x+5y=10\mathrm{\:by\:}2: 6x+10y=20
\mathrm{Multiply\:}2x+ay=4\mathrm{\:by\:}3: 3ay+6x=12

\begin{bmatrix}6x+10y=20\\ 6x+3ay=12\end{bmatrix}

6x + 3ay = 12
-
6x + 10y = 20
/
3a - 10y = -8

\begin{bmatrix}6x+10y=20\\ 3a-10y=-8\end{bmatrix}

3a-10y=-8 \ \textgreater \  \mathrm{Subtract\:}3a\mathrm{\:from\:both\:sides}
3a-10y-3a=-8-3a

\mathrm{Simplify} \ \textgreater \  -10y=-8-3a \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}-10
\frac{-10y}{-10}=-\frac{8}{-10}-\frac{3a}{-10}

Simplify more.

\frac{-10y}{-10} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{-a}{-b}=\frac{a}{b} \ \textgreater \  \frac{10y}{10}

\mathrm{Divide\:the\:numbers:}\:\frac{10}{10}=1 \ \textgreater \  y

-\frac{8}{-10}-\frac{3a}{-10} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{-8-3a}{-10}

\mathrm{Apply\:the\:fraction\:rule}: \frac{a}{-b}=-\frac{a}{b} \ \textgreater \  -\frac{-3a-8}{10} \ \textgreater \  y=-\frac{-8-3a}{10}

\mathrm{For\:}6x+10y=20\mathrm{\:plug\:in\:}\ \:y=\frac{8}{10-3a} \ \textgreater \  6x+10\cdot \frac{8}{10-3a}=20

10\cdot \frac{8}{10-3a} \ \textgreater \  \mathrm{Multiply\:fractions}: \:a\cdot \frac{b}{c}=\frac{a\:\cdot \:b}{c} \ \textgreater \  \frac{8\cdot \:10}{10-3a}
\mathrm{Multiply\:the\:numbers:}\:8\cdot \:10=80 \ \textgreater \  \frac{80}{10-3a}

6x+\frac{80}{10-3a}=20 \ \textgreater \  \mathrm{Subtract\:}\frac{80}{10-3a}\mathrm{\:from\:both\:sides}
6x+\frac{80}{10-3a}-\frac{80}{10-3a}=20-\frac{80}{10-3a}

\mathrm{Simplify} \ \textgreater \  6x=20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Divide\:both\:sides\:by\:}6 \ \textgreater \  \frac{6x}{6}=\frac{20}{6}-\frac{\frac{80}{10-3a}}{6}

\frac{6x}{6} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{6}{6}=1 \ \textgreater \  x

\frac{20}{6}-\frac{\frac{80}{10-3a}}{6} \ \textgreater \  \mathrm{Apply\:rule}\:\frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c} \ \textgreater \  \frac{20-\frac{80}{-3a+10}}{6}

20-\frac{80}{10-3a} \ \textgreater \  \mathrm{Convert\:element\:to\:fraction}: \:20=\frac{20}{1} \ \textgreater \  \frac{20}{1}-\frac{80}{-3a+10}

\mathrm{Find\:the\:least\:common\:denominator\:}1\cdot \left(-3a+10\right)=-3a+10

Adjust\:Fractions\:based\:on\:the\:LCD \ \textgreater \  \frac{20\left(-3a+10\right)}{-3a+10}-\frac{80}{-3a+10}

\mathrm{Since\:the\:denominators\:are\:equal,\:combine\:the\:fractions}: \frac{a}{c}\pm \frac{b}{c}=\frac{a\pm \:b}{c}
\frac{20\left(-3a+10\right)-80}{-3a+10} \ \textgreater \  \frac{\frac{20\left(-3a+10\right)-80}{-3a+10}}{6} \ \textgreater \  \mathrm{Apply\:the\:fraction\:rule}: \frac{\frac{b}{c}}{a}=\frac{b}{c\:\cdot \:a}

20\left(-3a+10\right)-80 \ \textgreater \  Rewrite \ \textgreater \  20+10-3a-4\cdot \:20

\mathrm{Factor\:out\:common\:term\:}20 \ \textgreater \  20\left(-3a+10-4\right) \ \textgreater \  Factor\;more

10-3a-4 \ \textgreater \  \mathrm{Subtract\:the\:numbers:}\:10-4=6 \ \textgreater \  -3a+6 \ \textgreater \  Rewrite
-3a+2\cdot \:3

\mathrm{Factor\:out\:common\:term\:}3 \ \textgreater \  3\left(-a+2\right) \ \textgreater \  3\cdot \:20\left(-a+2\right) \ \textgreater \  Refine
60\left(-a+2\right)

\frac{60\left(-a+2\right)}{6\left(-3a+10\right)} \ \textgreater \  \mathrm{Divide\:the\:numbers:}\:\frac{60}{6}=10 \ \textgreater \  \frac{10\left(-a+2\right)}{\left(-3a+10\right)}

\mathrm{Remove\:parentheses}: \left(-a\right)=-a \ \textgreater \   \frac{10\left(-a+2\right)}{-3a+10}

Therefore\;our\;solutions\;are\; y=\frac{8}{10-3a},\:x=\frac{10\left(-a+2\right)}{-3a+10}

Hope this helps!
7 0
3 years ago
Read 2 more answers
Other questions:
  • Oprs]
    7·1 answer
  • ‼️‼️solve by substitution {2p-3r=6
    11·1 answer
  • What is the lenght of the unknown log in the right triangle?
    11·1 answer
  • Ruby is decorating for a party and needs 120 meters of ribbon. At the party supply store, the ribbon is sold in rolls. Each roll
    5·1 answer
  • 14-12x+39x-18x=256-60x-657x​
    14·1 answer
  • Helpppppppppppppppppppp
    12·1 answer
  • Show 12×12.5 step-by-step
    15·1 answer
  • Miles and kilometers are twi different scales for measuring distances. A 5-kilometer race is approximately 3.1 miles, and a 10-k
    12·1 answer
  • What is the value of x and y? show all work
    13·2 answers
  • Please help, I’ll mark as brainliest.
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!