First, find the amount of time for the dart to hit the board using this equation: t = d/v
t = 2 m/ 15 m/s = 0.133 s
Then, find the height the dart has fallen from its initial point using this equation: h = 0.5gt²
h = 0.5(9.81 m/s²)(0.133 s)² = 0.0872 m or 8.72 cm
Since the diameter of the bull's eye is only 5 cm, and you started at the same level of the top of the bull's eye, that means the maximum allowance would only be 5 cm. Since it exceeded to 8.72 cm, it means that <em>Veronica will not hit the bull's eye.</em>
Answer : Yes, distance measurements based on the speed of light used for objects in space.
Explanation : A light year is measurement of distance that light travel in a one year.
In a one year light travels 9460000000000 kilometer.
We know that, speed of light is 
and time is 31536000 seconds in 1 year
so, distance = speed of light X time
Now, the light year is 
Example : The nearest star to earth is about 4.3 light year away.
Answer:
m = 2.01[kg]
Explanation:
This problem can be solved using Newton's second law which tells us that the force applied on a body is equal to the product of mass by acceleration.

where:
F = force = 12.5 [N]
m = mass [kg]
a = acceleration = 6.2 [m/s²]
![12.5=m*6.2\\m = 2.01[kg]](https://tex.z-dn.net/?f=12.5%3Dm%2A6.2%5C%5Cm%20%3D%202.01%5Bkg%5D)
You've got some UHF radio waves at the long end of that range. But most of the range consists of <em>microwaves</em>.
For example: In the US, the "microwave oven" kitchen appliance cooks with radiation at a wavelength of about 12.2 cm .