Answer:
Equilibrium
Explanation:
An object is in equilibrium when the vector sum of the force acting on the object is equal to zero.
A body in equilibrium is at state of rest of rest or in motion with no external force acting on it.
- The resultant of all forces acting on the body is zero.
- In this case there is no net force and the body will be at rest.
Answer:
The question is missing something it doesn't say how fast down its going and doesn't show the figure sorry for wasting an answer
The velocity of the body is zero; option A
<h3>What is the motion of an oscillating body?</h3>
The motion of an oscillating body is known as simple harmonic motion.
Simple harmonic motion involves a periodical motion of a body whose acceleration is directed towards a fixed point.
For a body that is oscillating up and down at the end of a spring, considering when the body is at the top of its up-and-down motion, the velocity of the body at the top and down is zero since the body comes to rest at the top and down position of its motion.
In conclusion, oscillating bodies undergo simple harmonic motion.
Learn more about simple harmonic motion at: brainly.com/question/24646514
#SPJ1
Answer:
Generally speaking, scientists have developed four different methods of determining the age of the earth. By using these methods, or a combination of them, the age of geological formations created by past events and even the fossilized bones of prehistoric animals can be determined.
Based on the research done by scientists, the Geologic Column, a graph that illustrates earth age, was developed. The Column, with its names for the epochs and eras of time, illustrates what scientists think was taking place in earth history. A small version of the Geologic Column is pictured at the right.
Explanation:
I hope this helps :)
Explanation:
Let
is the mass of proton. It is moving in a circular path perpendicular to a magnetic field of magnitude B.
The magnetic force is balanced by the centripetal force acting on the proton as :

r is the radius of path,

Time period is given by :


Frequency of proton is given by :

The wavelength of radiation is given by :


So, the wavelength of radiation produced by a proton is
. Hence, this is the required solution.