The answer is B since it's a second order reaction.
The answer is: D.unstable nuclei emitting high-energy particles as they formed more stable compositions.
Those high-energy particles are alpha particles
, beta particles
, gamma radiation.
For example, the decay chain of ²³⁸U is called the uranium series.
Decay start with U-238 and ends with Pb-206. There are several alpha and beta minus decays.
Antoine Henri Becquerel (1852 – 1908) was a French physicist and the first person to discover evidence of radioactivity.
Becquerel wrapped fluorescing crystal (uranium salt potassium uranyl sulfate) in a cloth, along with the photographic plate and a copper Maltese cross.
Several days later, he discovered that a image of the cross appeared on the plate.
The uranium salt was emitting radiation.
Because of this discovery, Becquerel won a Nobel Prize for Physics in 1903, which he shared with Marie Curie and Pierre Curie.
Answer:
ΔG° = - RTLnK is used to find the standard cell potential given the equilibrium constant
Explanation:
for an ideal disolution:
⇒ ΔG = RT∑ni LnXi
∴ ΔG = ( μi - μi*)ni
∴ μ : chemical potential
∴ μ*: chem. potential of the pure component at T and P.
⇒ ΔG = μi - μi* = RT LnXi
for a equilibrium reaction:
⇒ ∑ νi*μi = 0
⇒ ΔGr = ΔG°+ RT Ln Kx = 0
⇒ ΔG° = - RT LnKx
Answer:-
b. compound b will show an nh absorption while compound a will not.
Explanation:-
For compound B CH3CH2CH2NH2 there are two N-H bonds present. So it will show NH absorption.
But in compound A CH3CH2CH2N(CH3)2 there are no N-H bonds. So it will not show NH absorption.