Answer:
d. Sum of product enthalpies minus the sum of reactant enthalpies
Explanation:
The standard enthalpy change of a reaction (ΔH°rxn) can be calculated using the following expression:
ΔH°rxn = ∑n(products) × ΔH°f(products) - ∑n(reactants) × ΔH°f(reactants)
where,
ni are the moles of products and reactants
ΔH°f(i) are the standard enthalpies of formation of products and reactants
Answer:
4.48 - 6.48
Explanation:
A pH indicator works in a better way in a range of pH = pKa ± 1. That means we need to determine the pKa of the indicator propyl red to find the range over which it change its color. That is:
pKa = -log Ka
pKa = -log 3.3x10⁻⁶
pKa = 5.48
That means the range over propyl red will change from yellow to red or vice versa is:
4.48 - 6.48
Answer:
[H₂SO₄] = 6.07 M
Explanation:
Analyse the data given
8.01 m → 8.01 moles of solute in 1kg of solvent.
1.354 g/mL → Solution density
We convert the moles of solute to mass → 8.01 mol . 98g /1mol = 785.4 g
Mass of solvent = 1kg = 1000 g
Mass of solution = 1000g + 785.4 g = 1785.4 g
We apply density to determine the volume of solution
Density = Mass / volume → Volume = mass / density
1785.4 g / 1.354 g/mL = 1318.6 mL
We need this volume in L, in order to reach molarity:
1318.6 mL . 1L / 1000mL = 1.3186 L ≅ 1.32L
Molarity (mol/L) → 8.01 mol / 1.32L = 6.07M