1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Irina18 [472]
4 years ago
7

The equilibrium constant for the reaction

Chemistry
2 answers:
avanturin [10]4 years ago
7 0

Equilibrium concentration of SO3=1.7M

Equilibrium concentration of SO2=0.070 M

Equilibrium concentration of NO2=1.3 M

Equilibrium constant is given as=10.8

The equilibrium reaction is given as:

SO2(g)+NI2(g)⇌NO(g) +SO3(g)

Keq= ([NO][SO3])/([SO2][NO2])

To calculate concentration of NO rearranging the above equation will give:

NO=Keq*[SO2][NO2]/[SO3]

NO=(10.8*0.070*1.3)/1.7

= 0.578M

So concentration of NO will be 0.578M

Veseljchak [2.6K]4 years ago
5 0

Answer:

The equilibrium concentration of NO in the gas mixture should be 0.578 M

Explanation:

We have equilibrium data for the chemical reaction in the gas phase:

SO2(g)+NO2(g)⇌NO(g) +SO3(g)

The equilibrium constant (Keq) for this reaction is 10.8.

Data for the components involved in this equilibrium are:

[SO3] = 1.7 M

[NO] = Unknown

[NO2] = 1.3 M

[SO2] = 0.07 M

We can express the Equilibrium constant as the multiplication of the concentrations of products divided by the multiplication of the concentration of reagents. After that, we can isolate [NO] concentration and find its value.

Keq = \frac{[NO][SO3]}{[SO2][NO2]}\\Keq *[SO2][NO2] = [NO][SO3]

[NO] = Keq \frac{[SO2][NO2]}{[SO3]}

Replacing the values given in the problem

[NO] = (10.8) \frac{[0.07M][1.3M]}{[1.7M]}  = 0.578 M

Finally, the equlibrium concentration is [NO] = 0.578 M

You might be interested in
A 111.6 gram sample of iron (MW=55.8) was heated from 0 degrees C to 20 degrees C. It absorbed 1004 Joules of energy. What is th
qwelly [4]
Use the equation q=ncΔT.
q= heat absorbed our released (in this case 1004J)
n= number of moles of sample ( in this case 2.08 mol)
c=molar heat capacity 
ΔT=change in temperature (in this case 20°C)
You have to rewrite the equation for c.
c=q/nΔT
c=1004J/(2.08mol x 20°C)
c=24.1 J/mol°C
 
I hope this helps
7 0
3 years ago
A
amm1812

Solution:

1) Separate out the half-reactions. The only issue is that there are three of them.

<span>Fe2+ ---> Fe3+ 
S2¯ ---> SO42¯ 
NO3¯ ---> NO</span>

How did I recognize there there were three equations? The basic answer is "by experience." The detailed answer is that I know the oxidation states of all the elements on EACH side of the original equation. By knowing this, I am able to determine that there were two oxidations (the Fe going +2 to +3 and the S going -2 to +6) with one reduction (the N going +5 to +2).

Notice that I also split the FeS apart rather than write one equation (with FeS on the left side). I did this for simplicity showing the three equations. I know to split the FeS apart because it has two "things" happening to it, in this case it is two oxidations.

Normally, FeS does not ionize, but I can get away with it here because I will recombine the Fe2+ with the S2¯ in the final answer. If I do everything right, I'll get a one-to-one ratio of Fe2+ to S2¯ in the final answer.

2) Balancing all half-reactions in the normal manner.

<span>Fe2+ ---> Fe3+ + e¯ 
4H2O + S2¯ ---> SO42¯ + 8H+ + 8e¯ 
3e¯ + 4H+ + NO3¯ ---> NO + 2H2O</span>

3) Equalize the electrons on each side of the half-reactions. Please note that the first two half-reactions (both oxidations) total up to nine electrons. Consequently, a factor of three is needed for the third equation, the only one shown below:

<span>3 [3e¯ + 4H+ + NO3¯ ---> NO + 2H2O]</span>

Adding up the three equations will be left as an exercise for the reader. With the FeS put back together, the sum of all the coefficients (including any that are one) in the correct answer is 15.

Problem #2: CrI3 + Cl2 ---> CrO42¯ + IO4¯ + Cl¯ [basic sol.]

Solution:

Go to this video for the solution

Problem #3: Sb2S3 + Na2CO3 + C ---> Sb + Na2S + CO

Solution:

1) Remove all the spectator ions:

<span>Sb26+ + CO32- + C ---> Sb + CO</span>

Notice that I did not write Sb3+. I did this to keep the correct ratio of Sb as reactant and product. It also turns out that it will have a benefit when I select factors to multiply through some of the half-reactions. I didn't realize that until after the solution was done.

2) Separate into half-reactions:

<span>Sb26+ ---> Sb 
CO32- ---> CO 
C ---> CO</span>

3) Balance as if in acidic solution:

<span>6e¯ + Sb26+ ---> 2Sb 
2e¯ + 4H+ + CO32- ---> CO + 2H2O 
H2O + C ---> CO + 2H+ + 2e¯Could you balance in basic? I suppose, but why?</span>

4) Use a factor of three on the second half-reaction and a factor of six on the third.

<span>6e¯ + Sb26+ ---> 2Sb 
3 [2e¯ + 4H+ + CO32- ---> CO + 2H2O] 
6 [H2O + C ---> CO + 2H+ + 2e¯]The key is to think of 12 and its factors (1, 2, 3, 4, 6). You need to make the electrons equal on both sides (and there are 12 on each side when the half-reactions are added together). You get 12 H+ on each side (3 x 4 in the second and 6 x 2 in the third). You get six waters with 3 x 2 in the second and 6 x 1 in the third.Everything that needs to cancel gets canceled!</span>

5) The answer (with spectator ions added back in):

<span>Sb2S3 + 3Na2CO3 + 6C ---> 2Sb + 3Na2S + 9CO</span>

6) Here's a slightly different take on the solution just presented.

<span>a) Write the net ionic equation:<span>Sb26+ + CO32- + C ---> Sb + CO</span>b) Notice that charges must be balanced and that we have zero charge on the right. So, do this:<span>Sb26+ + 3CO32- + C ---> Sb + CO</span>c) Now, balance for atoms:<span>Sb26+ + 3CO32- + 6C ---> 2Sb + 9CO</span>d) Add back the sodium ions and sulfide ions to recover the molecular equation.<span>Sb2S3 + 3Na2CO3 + 6C ---> 2Sb + 3Na2S + 9CO</span></span>

7) Here's a discussion of a wrong answer to the above problem.

However, after reading the above wrong answer example, look at problem #10 below for an instance of having to add in a substance not included in the original reaction.

Problem #4: CrI3 + H2O2 ---> CrO42¯ + IO4¯ [basic sol.]

Solution:

1) write the half-reactions:

<span>Cr3+ ---> CrO42¯ 
I33¯ ---> IO4¯ 
H2O2 ---> H2O</span>

I wrote the iodide as I33¯ to make it easier to recombine it with the chromium ion at the end of the problem.

2) Balance as if in acidic solution:

<span>4H2O + Cr3+ ---> CrO42¯ + 8H+ + 3e¯ 
12H2O + I33¯ ---> 3IO4¯ + 24H+ + 24e¯ 
2e¯ + 2H+ + H2O2 ---> 2H2O</span>

I used water as the product for the hydrogen peroxide half-reaction because that gave me a half-reaction in acid solution. It will all go back to basic at the end of the problem.

3) Recover CrI3 by combining the first two half-reactions from just above:

<span>16H2O + CrI3 ---> 3IO4¯ + CrO42¯ + 32H+ + 27e¯</span>

4) Equalize the electrons:

<span>2 [16H2O + CrI3 ---> 3IO4¯ + CrO42¯ + 32H+ + 27e¯] 
27 [2e¯ + 2H+ + H2O2 ---> 2H2O]leads to:32H2O + 2CrI3 ---> 6IO4¯ + 2CrO42¯ + 64H+ + 54e¯ 
54e¯ + 54H+ + 27H2O2 ---> 54H2O</span>

5) Add the half-reactions together. Strike out (1) electrons, (2) hydrogen ion and (3) water. The result:

<span>2CrI3 + 27H2O2 ---> 2CrO42¯ + 6IO4¯ + 10H+ + 22H2O</span>

6) Add 10 hydroxides to each side. This makes 10 more waters on the right, so combine with the water alreadyon the right-hand side to make 32:

<span>2CrI3 + 27H2O2 + 10OH¯ ---> 2CrO42¯ + 6IO4¯ + 32H2O</span>



3 0
3 years ago
What is the number of molecules of c2h5oh in a 3m solution that contains 4.00kg h2o?
Veronika [31]
 The number  of C2H5OH  in a 3 m solution that contain 4.00kg H2O is calculate as below

M = moles of the solute/Kg  of water

that is 3M = moles of solute/ 4 Kg
multiply  both side by  4

moles of the  solute  is therefore = 12  moles

by use of Avogadro law constant

1 mole =6.02 x10^23  molecules

what  about 12 moles

=12 moles/1 moles  x 6.02 x10^23 = 7.224 x10^24 molecules
3 0
4 years ago
Which of the following is an example of an action done to maintain homeostasis?
Naddika [18.5K]
Ribosomes hope this helps if not oh well
6 0
3 years ago
Use chemical formulas to write the equation for the reaction between carbon and oxygen
yKpoI14uk [10]
C(5) + O2(g)


Hope this helped
3 0
3 years ago
Other questions:
  • The vapor pressure of liquid iodomethane, CH3I, is 40.0 mm Hg at 249 K.A sample of CH3I is placed in a closed, evacuated contain
    14·1 answer
  • The mass spectrum of an unknown compound has a molecular ion peak with a relative intensity of 57.10% and an M+1 peak of 6.83%.
    14·1 answer
  • Is H+ an acid, a base, or is it neutral?
    7·2 answers
  • Compared to ultraviolet light, an electromagnetic wave that has a higher frequency will also have ________.
    11·2 answers
  • The winner of the 20 km race ran at an average speed of 4 m / s. How long did he take to complete the race?
    10·1 answer
  • Predict what will be observed in each experiment below. A student sees tiny bubbles clinging to the inside of an unopened plasti
    6·2 answers
  • Assume you are designing a refrigerator system how would you use gas laws in the designing?​
    10·1 answer
  • - Berikan satu contoh organ. Ramalkan keadaan manusia jika kehilangan organ tersebut
    13·1 answer
  • EXPERIMENT 4 : TYPES OF PLATE BOUNDARY
    15·1 answer
  • A gas sample has a temperature of 19 °C with an unknown volume. The
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!