Answer:
The new volume of the gas is 21 L.
Explanation:
Volume of a gas is inversely proportional to its pressure at constant temperature such that,

or

We have,

It is required to find V₂. Using above law or Boyle's law such that :

So, the new volume of the gas is 21 L.
Answer:
<u> </u>H2 + <u>2</u><u> </u> Cl2 = <u>2</u><u> </u> HCl2
Answer:
1.6 grams
Explanation:
We need to prepare 100 mL (0.100 L) of a 0.10 M CuSO₄ solution. The required moles of CuSO₄ are:
0.100 L × 0.10 mol/L = 0.010 mol
The molar mass of CuSO₄ is 159.61 g/mol. The mass corresponding to 0.010 moles is:
0.010 mol × (159.61 g/mol) = 1.6 g
We should use 1.6 grams of CuSO₄.
Answer is: concentration of products increases (ammonia nad water).
Chemical reaction: heat + NH₄⁺ + OH⁻ ⇄ NH₃ + H₂<span>O.
</span>According to Le
Chatelier's Principle, the position of equilibrium moves to counteract the
change, because heat is increased, system consume that heat, so equilibrium is shifted to right, by decreasing concentration of reaactants and increasing concentration of product.
Barium-131's radiation level won't reach 1/4 of its initial level for 24 hours.
ln[A] t = -kt + ln[A] 0 is the integrated rate rule for the first-order reaction A's products.
A straight line is produced when the natural log of [A] is plotted as a function of time since this equation has the form y = mx + b.
How is the length of a half-life determined?
The amount of time needed for the reactant concentration to drop to half its initial value is known as the half-life of a reaction. A first-order reaction's half-life is a constant that is correlated with its rate constant:
t 1/2 = 0.693/k.
To know more about rate constant, visit:
brainly.com/question/20305871
#SPJ4