Whenever the fuel is being used up, a star explodes and the energy leakage from a star's core ceases.
Explanation:
The dying star expands in the "Red Giant," before even the inevitable collapse starts, due to nuclear reactions just outside of the core.
It becomes a white dwarf star when the star has almost the same density as the Sun. If it's much larger, a supernova explosion could take place and leave a neutron star away. However, if it is very large–at least three times the Sun's mass–the crumbling core of the star, nothing will ever stop it from crumbling. The star is imploding into a black hole, an endless gravitational loop in space.
Answer:
<u>Heating water with an open flame</u>
<u>Explanation:</u>
Remember, we are told in the label that Acetone is a "flammable liquid and vapor." <em>Being flammable means the substance can easily be set on fire</em>, and we would expect an open flame from heating water to trigger an explosion (a disaster) in which the Acetone is set on fire causing life-threatening dangers to the second group of students.
Answer:
D. Pressure and temperature.
Explanation:
The answer is D because when water molecules (H2o) have heat and pressure added it will boil. For exampe if your cooking pasta, you add water to your pan and when you add heat and put the lid of the pan it will boil.
Explanation:
It is known that 1 SCF produces approximately 1000 Btu of thermal energy.
As it is not mentioned for how many hours the gas is used in this process. Therefore, we assume that the total number of hours natural gas used in this process are as follows.
= 8760 hours
Now, we will calculate the annual cost of natural gas used in the process as follows.

= 555384000 SCF
Hence, annual cost of natural gas used in this process = loss of thermal energy
This will be equal to, 
= 555,384,000,000 BTU
Thus, we can conclude that the annual cost of natural gas used in the process is 555,384,000,000 BTU.