Computing the limit directly:

Alternatively, you can recognize the limit as being equivalent the derivative of <em>f(x)</em> at <em>x</em> = 2, in which case differentiating and plugging in 2 gives
<em>f'(x)</em> = 2<em>x</em> + 1 => <em>f'</em> (2) = 5
Answer:
I am pretty sure the answer is B. Hope this helps.
Step-by-step explanation:
42 + 5 * 32 - 42 ÷ 23
I am going to use the PEMDAS order. Parenthesis, Exponents, Multiply, Divide, Add, Subtract
Multiply ⇒ 5 * 32 = 160
42 + 160 - 42 ÷ 23
Divide ⇒ - 42 / 23 = -1.83
42 + 160 - 1.83
Add ⇒ 42 + 160 = 202
202 - 1.83
Subtract ⇒ 202 - 1.83 = 200.17
42 + 5 * 32 - 42 ÷ 23 = 200.17
Step-by-step explanation:

Answer:
18
Step-by-step explanation: