The function g(x) is created by applying an <em>horizontal</em> translation 4 units left and a reflection over the x-axis. (Correct choices: Third option, fifth option)
<h3>How to determine the characteristics of rigid transformations by comparing two functions</h3>
In this problem we have two functions related to each other because of the existence of <em>rigid</em> transformations. <em>Rigid</em> transformations are transformations applied to <em>geometric</em> loci such that <em>Euclidean</em> distance is conserved at every point of the <em>geometric</em> locus.
Let be f(x) = - 2 · cos (x - 1) + 3, then we use the concept of <em>horizontal</em> translation 4 units in the + x direction:
f'(x) = - 2 · cos (x - 1 + 4) + 3
f'(x) = - 2 · cos (x + 3) + 3 (1)
Now we apply a reflection over the x-axis:
g(x) = - [- 2 · cos (x + 3) + 3]
g(x) = 2 · cos (x + 3) - 3
Therefore, the function g(x) is created by applying an <em>horizontal</em> translation 4 units left and a reflection over the x-axis. (Correct choices: Third option, fifth option)
To learn more on rigid transformations: brainly.com/question/1761538
#SPJ1
120 inches cubed
4*10*3 is 120
Reduce a 24 cm by 36 cm photo to 3/4 original size.
The most logical way to do this is to keep the width-to-height ratio the same: It is 24/36, or 2/3. The original photo has an area of (24 cm)(36 cm) = 864 cm^2.
Let's reduce that to 3/4 size: Mult. 864 cm^2 by (3/4). Result: 648 cm^2.
We need to find new L and new W such that W/L = 2/3 and WL = 648 cm^2.
From the first equation we get W = 2L/3. Thus, WL = 648 cm^2 = (2L/3)(L).
Solve this last equation for L^2, and then for L:
2L^2/3 = 648, or (2/3)L^2 = 648. Thus, L^2 = (3/2)(648 cm^2) = 972 cm^2.
Taking the sqrt of both sides, L = + 31.18 cm. Then W must be 2/3 of that, or W = 20.78 cm.
Check: is LW = (3/4) of the original 864 cm^2? YES.
Answer:
Neon: 0
Oxide: -2
Copper: 2
Tin: 0
Step-by-step explanation: To solve you must add/subtract the numbers to get the charge, for example if its -30 charge from electrons and 10 charge from protons, -30 + 10 = -20 therefore the charge is -20