Answer:
In the attached photo.
Explanation:
Hello,
You could find the structure in the attached photo, taking into account that the initial (Z) resembles to the trans arrangement for this alkene.
Best regards.
Answer:
The correct answer is: 2M Al3+(aq) and 6 M NO3-(aq)
Explanation:
Step 1: Data given
2.0 M Al(NO3)3
Step 2:
Al(NO3)3 in water will dissociate as following:
Al(NO3)3 → Al^3+ + 3NO3^-
For 1 mol of Al(NO3)3 we will have 1 mol of Al^3+ and 3 moles of NO3^-
We know that the molarity of Al(NO3)3 = 2.0 M, this means 2.0 mol/ L
The mol ratio Al(NO3)3 and Al^3+ is 1:1 so the molarity of Al^3+ is<u> 2.0 M</u>
The mol ratio Al(NO3)3 and NO3^- is 1:3 so the molarity of NO3^- is<u> 6.0M</u>
The correct answer is: 2M Al3+(aq) and 6 M NO3-(aq)
Answer:
8 ang kylangan ntin hindi ko alam
Answer:
null
Explanation:
the hypothesis is a typical statistical theory which suggest that no statistical relationship and significance exists in a set of a given single observed variable between two sets of the observed data and measured phenomena
Answer:
0.364
Explanation:
Let's do an equilibrium chart for the reaction of combustion of ammonia:
2NH₃(g) + (3/2)O₂(g) ⇄ N₂(g) + 3H₂O(g)
4.8atm 1.9atm 0 0 Initial
-2x -(3/2)x +x +3x Reacts (stoichiometry is 2:3/2:1:3)
4.8-2x 1.9-(3/2)x x 3x Equilibrium
At equilibrium the velocity of formation of the products is equal to the velocity of the formation of the reactants, thus the partial pressures remain constant.
If pN₂ = 0.63 atm, x = 0.63 atm, thus, at equilibrium
pNH₃ = 4.8 - 2*0.63 = 3.54 atm
pO₂ = 1.9 -(3/2)*0.63 = 0.955 atm
pH₂O = 3*0.63 = 1.89 atm
The pressure equilibrium constant (Kp) is calculated with the partial pressure of the gases substances:
Kp = [(pN₂)*(pH₂O)³]/[(pNH₃)²*
]
Kp = [0.63*(1.89)³]/[(3.54)²*
]
Kp = 4.2533/11.6953
Kp = 0.364