In an installment loan, a lender loans a borrower a principal amount P, on which the borrower will pay a yearly interest rate of i (as a fraction, e.g. a rate of 6% would correspond to i=0.06) for n years. The borrower pays a fixed amount M to the lender q times per year. At the end of the n years, the last payment by the borrower pays off the loan.
After k payments, the amount A still owed is
<span>A = P(1+[i/q])k - Mq([1+(i/q)]k-1)/i,
= (P-Mq/i)(1+[i/q])k + Mq/i.
</span>The amount of the fixed payment is determined by<span>M = Pi/[q(1-[1+(i/q)]-nq)].
</span>The amount of principal that can be paid off in n years is<span>P = M(1-[1+(i/q)]-nq)q/i.
</span>The number of years needed to pay off the loan isn = -log(1-[Pi/(Mq)])/(q log[1+(i/q)]).
The total amount paid by the borrower is Mnq, and the total amount of interest paid is<span>I = Mnq - P.</span>
Using an exponential function, it is found that it takes 5.42 years for the car to halve in value.
<h3>What is an exponential function?</h3>
A decaying exponential function is modeled by:

In which:
- A(0) is the initial value.
- r is the decay rate, as a decimal.
In this problem, the car depreciates 12% a year in value, hence r = 0.12 and the equation is given by:
.
It halves in value at t years, for which A(t) = 0.5A(0), hence:






t = 5.42.
It takes 5.42 years for the car to halve in value.
More can be learned about exponential functions at brainly.com/question/25537936
#SPJ1
Answer:
Htjeghsjsvwuwvwhwvshvshsvshsvshs