Time taken = 3 hours
<h3>Further explanation</h3>
Given
speed : 75 mph
distance : 225 miles
Required
time taken
Solution
An equation of constant velocity motion

d = distance = m
v = speed = m / s
t = time = seconds
Input the value :
t = d : v
t = 225 miles : 75 miles/hour
t = 3 hours
Answer:
The entropy change for a real, irreversible process is equal to <u>zero.</u>
The correct option is<u> 'c'.</u>
Explanation:
<u>Lets look around all the given options -:</u>
(a) the entropy change for a theoretical reversible process with the same initial and final states , since the entropy change is equal and opposite in reversible process , thus this option in not correct.
(b) equal to the entropy change for the same process performed reversibly ONLY if the process can be reversed at all. Since , the change is same as well as opposite too . Therefore , this statement is also not true .
(c) zero. This option is true because We generate more entropy in an irreversible process. Because no heat moves into or out of the surroundings during the procedure, the entropy change of the surroundings is zero.
(d) impossible to tell. This option is invalid , thus incorrect .
<u>Hence , the correct option is 'c' that is zero.</u>
Answer:
The partial pressure of oxygen in the mixture is 296 mmHg.
Explanation:
The pressure exerted by a particular gas in a mixture is known as its partial pressure. So, Dalton's law states that the total pressure of a gas mixture is equal to the sum of the pressures that each gas would exert if it were alone.
This relationship is due to the assumption that there are no attractive forces between the gases.
So, in this case, the total pressure is:
PT=Phelium + Pnitrogen + Poxygen
You know:
- PT= 756 mmHg
- Phelium= 122 mmHg
- Pnitrogen= 338 mmHg
- Poxygen= ?
Replacing:
756 mmHg= 122 mmHg + 338 mmHg + Poxygen
Solving:
756 mmHg - 122 mmHg - 338 mmHg = Poxygen
Poxygen= 296 mmHg
<u><em>The partial pressure of oxygen in the mixture is 296 mmHg.</em></u>
Answer: 77.7g
Explanation:Please see attachment for explanation
Answer:
Potential energy is the stored energy of position possessed by an object.