<span>The constant bombardment of gas molecules against the inside walls of a container produces Pressure.
Explanation:
Pressure is defined as Force per unit Area.
P = F / A
In case of gases, the gas molecules have high Kinetic Energy and they move with high velocity. This cause them to strike against the inside wall of the container. Pressure is directly proportional to temperature. Increase in temperature cause to increase the Kinetic Energy of molecules, Hence, the rate of collisions increases resulting in increasing the pressure.</span>
It is in period 3
It is in group 17
It is a chlorine atom because it has 17 electrons which means the atomic number is 17
The activation energy is the minimum amount of energy that particles must have in order for them to participate in a chemical reaction. During chemical reactions bonds are broken and formed. Particles must collide with sufficient energy in order for the initial bonds to be broken. The activation energy is that that initial minimum energy that the particles can have in order for the bonds to be broken. Stronger bonds would require more energy to be broken and therefore the activation energy for such would be higher.
First. moles is just a label for a number of things. just like a
dozen = 12, a gross = 144, a mole = 6022 with another 20 zeros after the
2
next
moles = mass / molecular weight.
molecular weight = sum of atomic mass from the periodic table
atomic mass MnO2 = atomic mass Mn + 2 x atomic mass O
= 54.94 + 2 x 16 = 86.94 g/mole
so moles MnO2 = 98.0 grams / (86.94 g/mole) = 1.13 moles
notice that I only gave 3 digits? that because of sig figs read the link below if you don't understand....
mw C5H12 = 5 x 12 + 12 x 1 = 72 g/mole
so moles C5H12 = 12.0 g / 72.0 g/mole = 0.167 moles
mw XeF6 = 131.3+ 6 x 19.00 = 245.3
so moles XeF6 = 100 g / 245.3 g/mole = 0.4077 moles
I've also provided a link to a periodic table. if you need atomic weights click on any element and it will give you the
details.
Balanced equation for the above reaction is as follows;
Mg(OH)₂ + 2HCl ---> MgCl₂ + 2H₂O
stoichiometry of Mg(OH)₂ to MgCl₂ is 1:1
mass of Mg(OH)₂ reacted - 1.82 g
number of moles of Mg(OH)₂ - 1.82 g/ 58.3 g/mol = 0.0312 mol
number of Mg(OH)₂ moles reacted - number of MgCl₂ moles formed
number of MgCl₂ moles formed - 0.0312 mol
mass of MgCl₂ formed - 0.0312 mol x 95.2 g/mol = 2.97 g
mass of MgCl₂ formed - 2.97 g