Answer:
The magnitude of the acceleration is equal to 19.6m/s² and the acceleration is directed upwards though the magnitude of the charge has doubled. This is because the electric force is directed upwards and from newton's second law of motion the charge will have acceleration in the same direction as the electric force on the charge.
Explanation:
The detailed solution can be found in the attachment below.
Thank you for reading and I hope this is helpful to you.
In order to completely describe a velocity,
you need a speed and a direction.
The equation (option 3) represents the horizontal momentum of a 15 kg lab cart moving with a constant velocity, v, and that continues moving after a 2 kg object is dropped into it.
The horizontal momentum is given by:
Where:
- m₁: is the mass of the lab cart = 15 kg
- m₂: is the <em>mass </em>of the object dropped = 2 kg
- : is the initial velocity of the<em> lab cart </em>
- : is the <em>initial velocit</em>y of the <em>object </em>= 0 (it is dropped)
- : is the final velocity of the<em> lab cart </em>
- : is the <em>final velocity</em> of the <em>object </em>
Then, the horizontal momentum is:
When the object is dropped into the lab cart, the final velocity of the lab cart and the object <u>will be the same</u>, so:
Therefore, the equation represents the horizontal momentum (option 3).
Learn more about linear momentum here:
I hope it helps you!
Answer:
The value is
Explanation:
From the question we are told that
The focal length of the objective is
The focal length of the eyepiece is
The tube length is
Generally the magnitude of the overall magnification is mathematically represented as
Where is the objective magnification which is mathematically represented as
=>
=>
is the eyepiece magnification which is mathematically evaluated as
So
The rule to get the average speed is as follows:
average speed = average distance / average time
We are given that:
distance = 250 m
time = 110 sec
Substitute with the givens in the above equation to get the average speed as follows:
average speed = 250/110 = 25/11 meters/sec