Prior to determining the
experimental design, a scientist typically forms a hypothesis. The answer is
letter B. this is to prepare the scientist, the possible outcome of their
research before the experimental design whether they are wrong or not.
Well, first of all, I don't think "After the collapse of a nebular cloud ..."
is the first time that "atoms begin gravitating together". Seems to me like
that's what was going on all the time, and it's what caused the nebular cloud
to collapse in the first place.
In any case, once the pressure and temperature at the center get high enough,
you get "ignition" of nuclear fusion, and that's when you first have a "star".
The answer will be
(1) correct
(2) correct
(3) the force of the soccer ball on the net
(4) Will not change
Hope this help
Answer:
d. 37 °C
Explanation:
= mass of lump of metal = 250 g
= specific heat of lump of metal = 0.25 cal/g°C
= Initial temperature of lump of metal = 70 °C
= mass of water = 75 g
= specific heat of water = 1 cal/g°C
= Initial temperature of water = 20 °C
= mass of calorimeter = 500 g
= specific heat of calorimeter = 0.10 cal/g°C
= Initial temperature of calorimeter = 20 °C
= Final equilibrium temperature
Using conservation of heat
Heat lost by lump of metal = heat gained by water + heat gained by calorimeter

Answer:
The correct answer is B.
Explanation:
Step 1:
The available regression equation is: Predict height= 0.29 + 0.48 (age).
Here, the predict height is dependent variable and the age is in-dependent variable.
Intercept = 0.29
Slope = 0.48
The given regression equation indicates the y on x model and the intercept coefficients of the regression equation is 0.29 and the slope is 0.48.
Step 2:
The height increases, an average, by 0.48 m per year.
Because co-efficient of slope variable indicate the positive sign and we increase 1 year in age then automatically height increased is 0.48 m.
<h3>
</h3><h3>
The height increases, on average, by 0.48 meter each year.</h3>