We can use the law of conservation of energy to solve the problem.
The total mechanical energy of the system at any moment of the motion is:

where U is the potential energy and K the kinetic energy.
At the beginning of the motion, the ball starts from the ground so its altitude is h=0 and therefore its potential energy U is zero. So, the mechanical energy is just kinetic energy:

When the ball reaches the maximum altitude of its flight, it starts to go down again, so its speed at that moment is zero: v=0. So, its kinetic energy at the top is zero. So the total mechanical energy is just potential energy:

But the mechanical energy must be conserved, Ef=Ei, so we have

and so, the potential energy at the top of the flight is
RDA stands for Recommended Daily Allowance. To determine the amount needed of a certain adult per day, we simply multiply the mass of the adult to the value of RDA. For this case, we do as follows:
Daily requirement = 12 mg/kg ( 78 kg ) = 936 mg of lysine = 936000 g
Friction force is when you rub 2 things together and they get warm. Motion, on the other hand, is if your walking along the sidewalk - you hardly get warmer -------
Unless it's a colder day outside and you're walking SO you decide to rub your hands together to get warm, but if you were just walking , its motion and only motion - no friction :):)
9.8........................
Answer:
1.53 seconds
Explanation:
Applying,
T = 2usin∅/g................ Equation 1
Where, T = time of flight, u = initial velocity, ∅ = angle of projectile to the horizontal, g = acceleration due to gravity
From the question,
Given: u = 15 m/s, ∅ = 30°
Constant: g = 9.8 m/s²
Substitute these values in equation 1
T = 2(15)(sin30°)/9.8
T = 15/9.8
T = 1.53 seconds
Hence the time rate of flight is 1.53 seconds