1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Hatshy [7]
3 years ago
10

Explain how potential difference produces a current in a conductor.

Physics
1 answer:
Yuki888 [10]3 years ago
5 0
Potential difference is the work done In moving a charge from one point to another in a conductor
You might be interested in
We have discovered some exoplanets that are still forming from a nebula. How might those planets change over time?
Rudik [331]
Based on several theories made by scientists, planets are formed because of the accumulation of gases and other particles that are attracted to each other. These accumulated gases form into clumps and eventually the clumps get bigger and turn into a big orbital mass. The exoplanets may experience change over time through the observance of its orbit in a particular axis, and if there are other debris that might affect the planet's continuous growth.
6 0
3 years ago
Se golpea una pelota de golf de manera que su velocidad inicial forma un ángulo de 45° con la horizontal. La pelota alcanza el s
nordsb [41]

Answer:

42m/s

6.06s

Explanation:

To find the initial velocity and time in which the ball is fling over the ground you use the following formulas:

x_{max}=\frac{v_o^2sin(2\theta)}{g}\\\\x_{max}=vt_{max}

θ: angle = 45°

vo: initial velocity

g: gravitational constant = 9.8m/s^2

x_max: max distance = 180 m

t_max: max time

by replacing the values of the parameters and do vo the subject of the first formula you obtain:

v_o=\sqrt{\frac{gx_{max}}{sin(2\theta)}}\\\\v_o=\sqrt{\frac{(9.8m/s^2)(180m)}{sin(2(45\°))}}=42\frac{m}{s}

with this value of vo you calculate the max time:

t_{max}=\frac{x_{max}}{v}=\frac{x_{max}}{v_ocos(45\°)}\\\\t_{max}=\frac{180m}{(42m/s)cos(45\°)}=6.06s

hence, the initial velocity of the ball is 42m/s and the time in which the ball is in the air is 6.06s

- - - - - - - - - - - - -- - - - - - - - - - - - - -

TRANSLATION:

Para encontrar la velocidad inicial y el tiempo en el que la pelota está volando sobre el suelo, use las siguientes fórmulas:

θ: ángulo = 45 °

vo: velocidad inicial

g: constante gravitacional = 9.8m / s ^ 2

x_max: distancia máxima = 180 m

t_max: tiempo máximo

reemplazando los valores de los parámetros y haciendo el tema de la primera fórmula que obtiene:

con este valor de vo usted calcula el tiempo máximo:

por lo tanto, la velocidad inicial de la pelota es de 42 m / sy el tiempo en que la pelota está en el aire es de 6.06 s

4 0
2 years ago
Which statement about cellulose is true?
prohojiy [21]
The correct answer is D
7 0
3 years ago
Read 2 more answers
Kiley went 5.7 km/h north and then went 5.8 km/h west. From start to finish, she went 8.1 km/h northwest.
TiliK225 [7]
<span>5.7 km/h north and 5.8 km/h west are instantaneous velocities, while 8.1 km/h is the average velocity.

This is because each value has a magnitude and direction so it is a velocity. Moreover, the 8.1 km/h is the resultant of the two velocities so it is the average while the other two are instantaneous.</span>
6 0
2 years ago
Read 2 more answers
) Force F = − + ( 8.00 N i 6.00 N j ) ( ) acts on a particle with position vector r = + (3.00 m i 4.00 m j ) ( ) . What are (a)
natali 33 [55]

To develop this problem it is necessary to apply the concepts related to the Cross Product of two vectors as well as to obtain the angle through the magnitude of the angles.

The vector product between the Force and the radius allows us to obtain the torque, in this way,

\tau = \vec{F} \times \vec{r}

\tau = (8i+6j)\times(-3i+4j)

\tau = (8*4)(i\times j)+(6*-3)(j\times i)

\tau = 32k +18k

\tau = 50 k

Therefore the torque on the particle about the origen is 50k

PART B) To find the angle between two vectors we apply the definition of the dot product based on the vector quantities, that is,

cos\theta = \frac{r\cdot F}{|\vec{r}|*|\vec{F}|}

cos\theta = \frac{(8*-3)+(4*3)}{\sqrt{(-3)^2+4^2}*\sqrt{8^2+6^2}}

cos\theta = -0.24

\theta = cos^{-1} (-0.24)

\theta = 103.88\°

Therefore the angle between the ratio and the force is 103.88°

5 0
3 years ago
Other questions:
  • ( Apply Concepts ) Nome , Alaska, lies at 64°N latitude. San Diego , California , lies at 32°N latitude. Which city receives mor
    9·1 answer
  • The slope of the line on any speed vs time graph is equal to the objects ?
    10·1 answer
  • I THINK I KNOW THE ANSWER BUT I NEED VERIFICATION!!!!!!!
    12·2 answers
  • A very long string (linear density 0.7 kg/m ) is stretched with a tension of 70 N . One end of the string oscillates up and down
    9·1 answer
  • A jogger runs 5.0 km on a straight trail at an angle of 60° south of west. What is the southern component of the run rounded to
    12·2 answers
  • Compare the kinetic energies of a ball moving at 5 m/s to when it is moving
    5·1 answer
  • Describe your experience with the largest earthquake you have left
    11·1 answer
  • Equilibrium of forces
    5·2 answers
  • Explain the Law of Reflection
    9·1 answer
  • What is the change in the internal energy of a system that does 600 joules of work and absorbs 800 joules of heat?
    11·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!