Science is characterized by empirical observations, testable questions, formation of hypotheses and experiments that result in stable and replicable results, logic reasoning and theoretical constructs
Answer:
A = -14.87 i ^ + 8.42 j ^ + 0 k ^
B = -25.41 i ^ -12.0 j ^ + 0 k ^
Explanation:
For this exercise let's use trigonometry by decomposing to vectors
vector A
module 17.1 with an angle of 150.5 counterclockwise.
Sin 150.5 =
/ A
cos 150.5 = Ax / A
A_{y} = A sin 150.5 = 17.1 sin 150.5
Aₓ = A cos 1505 = 172 cos 150.5
A_{y} = 8,420
Aₓ = -14.870
the vector is
A = -14.87 i ^ + 8.42 j ^ + 0 k ^
Vector B
= 28.1 sin 205.3
Bₓ = 28.1 cos 205.3
B_{y} = -12.009
Bₓ = -25.405
the vector is
B = -25.41 i ^ -12.0 j ^ + 0 k ^
Answer:
Planning and performing an experiment to answer the question.
Explanation:
The total energy stored in the capacitors is determined as 2.41 x 10⁻⁴ J.
<h3>What is the potential difference of the circuit?</h3>
The potential difference of the circuit is calculated as follows;
U = ¹/₂CV²
where;
- C is capacitance of the capacitor
- V is the potential difference
For a parallel circuit the voltage in the circuit is always the same.
The energy stored in 2.5 μf capacitor is known, hence the potential difference of the circuit is calculated as follows;
U = ¹/₂CV²
2U = CV²
V = √2U/C
V = √(2 x 1.8 x 10⁻⁴ / 2.5 x 10⁻⁶)
V = 12 V
The equivalent capacitance of C1 and C2 is calculated as follows;
1/C = 1/C₁ + 1/C₂
1/C = (1)/(0.9 x 10⁻⁶) + (1)/(16 x 10⁻⁶)
1/C = 1,173,611.11
C = 1/1,173,611.11
C = 8.52 x 10⁻⁷ C
The total capacitance of the circuit is calculated as follows;
Ct = 8.52 x 10⁻⁷ C + 2.5 x 10⁻⁶ C
Ct = 3.35 x 10⁻⁶ C
The total energy of the circuit is calculated as follows;
U = ¹/₂CtV²
U = ¹/₂(3.35 x 10⁻⁶ )(12)²
U = 2.41 x 10⁻⁴ J
Learn more about energy stored in a capacitor here: brainly.com/question/14811408
#SPJ1
Answer:
In collision between equal-mass objects, each object experiences the same acceleration, because of equal force exerted on both objects.
Explanation:
In a collision two objects, there is a force exerted on both objects that causes an acceleration of both objects. These forces that act on both objects are equal in magnitude and opposite in direction.
Thus, in collision between equal-mass objects, each object experiences the same acceleration, because of equal force exerted on both objects.