Answer:

Explanation:
From the question we are told that
Nucleus diameter 
a 12C nucleus
Required kinetic energy 
Generally initial speed of proton must be determined,applying the law of conservation of energy we have

where
=initial kinetic energy
=final kinetic energy
=initial electric potential
=final electric potential
mathematically

where
=distance b/w charges
=nucleus charge 
=constant
=proton charge
Generally kinetic energy is know as

Therefore
Generally equation for radius is 
Mathematically solving for radius of nucleus


Generally we can easily solving mathematically substitute into v_1









Therefore the proton must be fired out with a speed of 
Well, one AU is 149,597,870 km. So, we would basically have to divide 4.5 billion km by 149,597,870, right?
4,500,000,000/149,597,870=30.080642 AU.
So, the correct answer would be 30 AU. Hoped this helped!
Answer:
Shawn's speed relative to Susan's speed = 10 mph
Resultant velocity = 82.32 mph
Explanation:
The given data :-
i) Susan driving in north and speed of Susan is ( v₁ ) = 53 mph.
ii) Shawn driving in east and speed of Shawn is ( v₂ ) = 63 mph.
iii) The speed of both Susan and Shawn is relative to earth.
iv) The angle between Susan in north and Shawn in east is 90°.
We have to find Shawn's speed relative to Susan's speed.
v₂₁ = v₂ - v₁ = 63 - 53 = 10 mph
Resultant velocity,

v = 82.32 mph
Car is moving on the glassy slope with constant speed
Now we know that

so acceleration is rate of change in velocity
as we know that velocity is constant here so acceleration is zero
so here

now as we know by Newton's II law

since a = 0

so net force will be ZERO on it during this motion
We divide the thin rectangular sheet in small parts of height b and length dr. All these sheets are parallel to b. The infinitesimal moment of inertia of one of these small parts is

where

Now we find the moment of inertia by integrating from

to

The moment of inertia is

(from (-a/2) to

(a/2))