Answer:
F_net = 26.512 N
Explanation:
Given:
Q_a = 3.06 * 10^(-4 ) C
Q_b = -5.7 * 10^(-4 ) C
Q_c = 1.08 * 10^(-4 ) C
R_ac = 3 m
R_bc = sqrt (3^2 + 4^2) = 5m
k = 8.99 * 10^9
Coulomb's Law:
F_i = k * Q_i * Q_j / R_ij^2
Compute F_ac and F_bc :
F_ac = k * Q_a * Q_c / R^2_ac
F_ac = 8.99 * 10^9* ( 3.06 * 10^(-4 ))* (1.08 * 10^(-4 )) / 3^2
F_ac = 33.01128 N
F_bc = k * Q_b * Q_c / R^2_bc
F_bc = 8.99 * 10^9* ( 5.7 * 10^(-4 ))* (1.08 * 10^(-4 )) / 5^2
F_bc = - 22.137 N
Angle a is subtended between F_bc and y axis @ C
cos(a) = 3 / 5
sin (a) = 4 / 5
Compute F_net:
F_net = sqrt (F_x ^2 + F_y ^2)
F_x = sum of forces in x direction:
F_x = F_bc*sin(a) = 22.137*(4/5) = 17.71 N
F_y = sum of forces in y direction:
F_y = - F_bc*cos(a) + F_ac = - 22.137*(3/5) + 33.01128 = 19.72908 N
F_net = sqrt (17.71 ^2 + 19.72908 ^2) = 26.5119 N
Answer: F_net = 26.512 N
Answer:
v = 8.96 m/s
Explanation:
Initial speed of the ball, u = 10 m/s
It caught 1 meter above its initial position.
Acceleration due to gravity, 
We need to find the final speed of the ball when it is caught. Let is equal to v. To find the value of v, use third equation of motion as :



v = 8.96 m/s
So, the speed of the ball when it is caught is 8.96 m/s. Hence, this is the required solution.
The answer to your question is A, The force that holds together elements in a compound.
Answer:
Vectors have a size and direction. Each of the existing vector quantity has a magnitude and a direction. Having direction along with the magnitude is the difference of a vector quantity from a scalar quantity. Vectors are indicates with arrows.