The correct answer to the question is : B) The weight of the water, and C) The height of the water.
EXPLANATION :
Before coming into any conclusion, first we have to understand potential energy of a body.
The potential energy of a body due to its position from ground is known as gravitational potential energy.
The gravitational potential energy is calculated as -
Potential energy P.E = mgh
Here, m is the mass of the body, and g is the acceleration due to gravity.
h stands for the height of the body from the ground.
We know that weight of a body is equal to the product of mass with acceleration due to gravity.
Hence, weight W = mg
Hence, potential energy is written as P.E = weight × height.
Hence, potential energy depends on the weight and height of the water.
The protons will possess a force pointing to the right.
The force is called Laurentz Force, which is measured by: F = qvB
Here, q is positive for proton, v and B are cross product determined by right hand rule.
Answer:
R = ½ R₀
Explanation:
This is an exercise in Ohm's law,
V = IR
in the initial case
V₀ = I₀ R₀ (1)
indicates that the voltage remains constant and the current is doubled
I = 2 I₀
V₀ = I R
we substitute
V₀ = 2 I₀ R
R = ½ V₀ / I₀
we replace by equation 1
R = ½ R₀
Answer:
Work done by the spring is negative
Explanation:
We can answer this question by thinking what is the force acting on the box.
In fact, the force acting on the box is the restoring force of the spring, which is given by Hooke's Law:

where
k is the spring constant
x is the displacement of the box with respect to the equilibrium position of the spring
The negative sign in the equation indicates that the direction of the force is always opposite to the direction of the displacement: so, whether the spring is compressed or stretched, the force applied by the spring on the box is towards the equilibrium position.
The work done by the restoring force is also given by

where
F is the restoring force
x is the displacement
is the angle between the direction of the force and the displacement
Here we know that the force is always opposite to the displacement, so

Which means that the work done by the spring is always negative, since the direction of the restoring force is always opposite to the direction of motion.
Answer:
E.) conservation of angular momentum
Explanation:
The angular momentum is defined as:
x 
where
is the radius of the star,
is the mass and
the angular velocity.
and angular momentum is an amount that is conserved, so the angular momentum before the star is compressed must be equal to the angular momentum after the star was compressed:
x
x 
the second radius is smaller than the first radius, since the star shrinked, the second angular velocity must be greater that the first.
In other words, the angular velicity increases as the star shrinks because of the conservation of angular momentum.