1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
pentagon [3]
3 years ago
13

Will an object with the density of 0.66g float?

Physics
1 answer:
Firdavs [7]3 years ago
6 0
Yes yes it will............
You might be interested in
A mercury thermometer has a glass bulb of interior volume 0.100 cm3 at 10°c. the glass capillary 10) tube above the bulb has an
Nadya [2.5K]
Initial volume of mercury is
V = 0.1 cm³

The temperature rise is 35 - 5 = 30 ⁰C = 30 ⁰K.

Because the coefficient of volume expansion is 1.8x10⁻⁴ 1/K, the change in volume of the mercury is 
ΔV = (1.8x10⁻⁴ 1/K)*(30 ⁰K)(0.1 cm³) = 5.4x10⁻⁴ cm³

The cross sectional area of the tube is
A = 0.012 mm² = (0.012x10⁻² cm²).
Therefore the rise of mercury in the tube is
h = ΔV/A
   = (5.4x10⁻⁴ cm³)/(0.012x10⁻² cm²)
   = 4.5 cm

Answer: 4.5 cm
7 0
3 years ago
Read 2 more answers
A tightrope walker more easily balances on a tightwire if his pole
cestrela7 [59]
B) droops.

Why?
To maintain balance, you do not need something short so you're balanced well... You need something long and droopy to maintain balance. The pole should be held by your waist and it should be light.

Hope this helps!~
4 0
3 years ago
The rate at which heat enters an air conditioned building is often roughly proportional to the difference in temperature between
erma4kov [3.2K]

Answer:

Considering first question

    Generally the coefficient of performance of the air condition  is mathematically represented as

   COP  =  \frac{T_i}{T_o - T_i}

Here T_i is the inside temperature

while  T_o is the outside temperature

What this coefficient of performance represent is the amount of heat the air condition can remove with 1 unit of electricity

So it implies that the air condition removes   \frac{T_i}{T_o - T_i} heat with 1 unit of electricity

Now from the question we are told that the rate at which heat enters an air conditioned building is often roughly proportional to the difference in temperature between inside and outside. This can be mathematically represented as

         Q \ \alpha \ (T_o - T_i)

=>        Q= k (T_o - T_i)

Here k is the constant of proportionality

So  

    since  1 unit of electricity  removes   \frac{T_i}{T_o - T_i}  amount of heat

   E  unit of electricity will remove  Q= k (T_o - T_i)

So

      E =  \frac{k(T_o - T_i)}{\frac{T_i}{ T_h - T_i} }

=>   E = \frac{k}{T_i} (T_o - T_i)^2

given that  \frac{k}{T_i} is constant

    =>  E \  \alpha  \  (T_o - T_i)^2

From this above equation we see that the  electricity required(cost of powering and operating the air conditioner) is approximately proportional to the square of the temperature difference.

 Considering the  second question

Assuming that  T_i   =  30 ^oC

 and      T_o  =  40 ^oC

Hence  

     E = K (T_o - T_i)^2

Here K stand for a constant

So  

        E = K (40 -  30)^2

=>      E = 100K

Now if  the  T_i   =  20 ^oC

Then

       E = K (40 -  20)^2

=>      E = 400 \ K

So  from this see that the electricity require (cost of powering and operating the air conditioner)when the inside temperature is low  is  much higher than the electricity required when the inside temperature is higher

Considering the  third question

Now in the case where the  heat that enters the building is at a rate proportional to the square-root of the temperature difference between inside and outside

We have that

       Q = k (T_o - T_i )^{\frac{1}{2} }

So

       E =  \frac{k (T_o - T_i )^{\frac{1}{2} }}{\frac{T_i}{T_o - T_i} }

=>   E =  \frac{k}{T_i} * (T_o - T_i) ^{\frac{3}{2} }

Assuming \frac{k}{T_i} is a constant

Then  

     E \ \alpha \ (T_o - T_i)^{\frac{3}{2} }

From this above equation we see that the  electricity required(cost of powering and operating the air conditioner) is approximately proportional to the square root  of the cube of the  temperature difference.

   

4 0
3 years ago
How do modern scientists describe the make up of matter
mojhsa [17]
<span>Matter is considered by modern scientists to be anything in the universe that takes up mass. It can be in any state including solid, liquid, or gas. It can also hold potential and or kinetic energy.</span>
4 0
3 years ago
When you set a heavy bag down on the ground, you are doing _______ work on it.
puteri [66]

When you set a heavy bag down on the ground, you are doing negative work on it.

4 0
2 years ago
Other questions:
  • a defensive tackle picks up the 0.5kg football to a height of 0.8m in 0.25s .... 1.calculate the work done 2.calculate the power
    7·1 answer
  • A sailboat travels a distance of 600 m in 40 seconds. What speed is it going?
    5·1 answer
  • A capacitor is connected to an ac power supply. The maximum current is 4.0 A and the reactance of the capacitor is Xc = 8.0 Ω. W
    10·1 answer
  • Two linear polarizing filters are placed one behind the other, so that their transmission directions are parallel to one another
    11·1 answer
  • Identify the smallest unit of an element
    13·2 answers
  • What is air pressure?
    12·1 answer
  • I’m on a test please help me
    10·1 answer
  • Hi, I'm stuck on the problem: Consider a resistor (R=1000 kΩ) and a capacitor (C=1μF) connected in series. This configuration is
    15·1 answer
  • During crystallisation the crystals separate out from the hot ________solution of a substance on cooling
    5·1 answer
  • A mass of (200 of hot water at (75, 0 degrees * C) is mixed with cold water of mass M at (5, 0 degrees * C) The final temperatur
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!