Answer:
Juno scientific payload includes:
- A gravity/radio science system (Gravity Science)
- A six-wavelength microwave radiometer for atmospheric sounding and composition (MWR)
- A vector magnetometer (MAG)
- Plasma and energetic particle detectors (JADE and JEDI)
- A radio/plasma wave experiment (Waves)
- An ultraviolet imager/spectrometer (UVS)
- An infrared imager/spectrometer (JIRAM)
Explanation:
Each mission of NASA has a specific set of instruments that it uses to perform scientific experiments on the desired heavenly body. In case of Juno, the mission for Jupiter has a series of instruments that would study domains of gravitational forces, magnetic effect, particle detection, radiation detection, UV/IR imaging, and plasma experiments.
C.
Explanation: Because mirrors are lighter, and they are easier than lenses to make perfectly smooth.
Answer:
See Explanation
Explanation:
Sound is a mechanical wave. A mechanical wave requires a material medium for propagation. This means that sound waves must be carried in air. If there are no air molecules, sound waves can not travel.
When air is gradually removed from the jar by the pump, the sound intensity from the bell gradually decreases owing to the fact that air which is the medium through which sound waves are propagated is gradually being removed from the jar.
Answer:
55000 W/m²
Explanation:
Parameters given:
Surface temperature, T = 1000°C
Hear transfer coefficient, h = 55 W/m²C
Convection heat transfer coefficient is given as:
h = Heat flux/Temperature
Hence, Heat Flux, q, is given as:
q = h * T
q = 55 * 1000 = 55000 W/m²C