1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
irakobra [83]
3 years ago
7

If you lived by the sea, what effect of the moon would you see? Describe the effect.

Physics
1 answer:
dolphi86 [110]3 years ago
8 0

Answer:

the changes in waves

Explanation:

the moon has its own gravitational pull thus making waves  and the rising tides

You might be interested in
Assuming that Bernoulli's equation applies, compute the volume of water ΔV that flows across the exit of the pipe in 1.00 s . In
OLEGan [10]

Answer:

discharge rate (Q) = 0.2005 m^{3} / s

Explanation:

if you read the question you would see that some requirements are missing, by using search engines, you can get the complete question as stated below:

Water flows steadily from an open tank as shown in the figure. (Figure 1) The elevation of point 1 is 10.0m , and the elevation of points 2 and 3 is 2.00 m . The cross-sectional area at point 2 is 4.80x10-2m ; at point 3, where the water is discharged, it is 1.60x10-2m. The cross-sectional area of the tank is very large compared with the cross-sectional area of the pipe. Part A Assuming that Bernoulli's equation applies, compute the volume of water DeltaV that flows across the exit of the pipe in 1.00 s . In other words, find the discharge rate \Delta V/Delta t. Express your answer numerically in cubic meters per second.

solution:

time = 1 s

elevation of point 1 (z1) = 10 m

elevation of point 2 (z2) = 2 m

elevation of point 3 (z3) = 2 m

cross section area of point 2 = 4.8 x 10^{2} m

cross section area of point 3 = 1.6 x 10^{2} m

g

acceleration due to gravity (g) = 9.8 m/s^{2}

find the discharge rate at point 3 which is the exit pipe.

discharge rate (Q) = A3 x V3

where A3 is the cross sectional area at point 3 and V3 is the velocity of the fluid and can be gotten by applying Bernoulli's equation below

\frac{P1}{ρg} +  \frac{V1^{2} }{2g} + Z1 =  \frac{P3}{ρg} + \frac{V3^{2} }{2g} + Z3

pressure at point 1 (P1) is the same as pressure at point 3 (P3), and at point 1, the velocity (V1) = 0. therefore the equation now becomes

\frac{P1}{ρg} + Z1 =  \frac{P1}{ρg} + \frac{V3^{2} }{2g} + Z3

Z1 = \frac{V3^{2} }{2g} + Z3

V3 = \sqrt{2g(Z1-Z3)}

V3 = \sqrt{2 x 9.8 x (10 - 3)}

V3 = 12.53 m/s

discharge rate (Q) = A3 x V3 = 1.6 x 10^{-2} x 12.53

discharge rate (Q) = 0.2005 m^{3} / s

8 0
3 years ago
Which location, 23 degrees or 48 degrees would experience the same earthquake at stronger intensity?Explain why.​
BaLLatris [955]

Answer:

48 degress

Explanation:

An earthquake causes many different intensities of shaking in the area of the epicenter where it occurs. So the intensity of an earthquake will vary depending on where you are. Sometimes earthquakes are referred to by the maximum intensity they produce. In the United States, we use the Modified Mercalli Scale. Earthquake intensity is a ranking based on the observed effects of an earthquake in each particular place. Therefore, each earthquake produces a range of intensity values, ranging from highest in the epicenter area to zero at a distance from the epicenter.

6 0
2 years ago
What is the weight of a box with a mass of 150 kg on Earth?
Dmitry [639]

Answer:

W = M g = 150 kg * 9.81 m/s^2 = 1470 N

You were only given 3 significant figures in the question.

6 0
2 years ago
What will change the velocity of a periodic wave?
Gwar [14]
The one that will change the velocity of a periodic wave is : 
B. Changing the medium of the wave
Waves is always determined by the properties of the medium, which means that changing the medium will change the velocity of the wave

hope this helps
7 0
2 years ago
Read 2 more answers
The terminal velocity of a person falling in air depends upon the weight and the area of the person facing the fluid. Find the t
AVprozaik [17]

Answer:

v=115 m/s

or

v=414 km/h

Explanation:

Given data

A_{area}=0.140m^{2}\\  p_{air}=1.21 kg/m^{3}\\  m_{mass}=80kg

To find

Terminal velocity (in meters per second and kilometers per hour)

Solution

At terminal speed the weight equal the drag force

mg=1/2*C*p_{air}*v^{2}*A_{area}\\   v=\sqrt{\frac{2*m*g}{C**p_{air}*A_{area}} }\\ Where C=0.7\\v=\sqrt{\frac{2*9.8*80}{1.21*0.14*0.7} }\\ v=115m/s

For speed in km/h(kilometers per hour)

To convert m/s to km/h you need to multiply the speed value by 3.6

v=(115*3.6)km/h\\v=414km/h

5 0
3 years ago
Other questions:
  • A parcel of air is being forced up the windward side of a 7,000-foot-high mountain. The parcel has a temperature of 91.0°F at 0
    10·1 answer
  • List the color of the stars from hottest to coldest
    11·1 answer
  • Dizziness. Our balance is maintained, at least in part, by the endolymph fluid in the inner ear. Spinning displaces this fluid,
    15·1 answer
  • A 2.5-cm-diameter parallel-plate capacitor has a 2.2 mm spacing. The electric field strength inside the capacitor is 6.0×104 V/m
    12·1 answer
  • A pressure difference of 6.00 x 104 Pa is required to maintain a volume flow rate of 0.400 m3 /s for a viscous fluid flowing thr
    12·1 answer
  • The unit of length most suitable for measuring the thickness of a cell phone is a
    13·1 answer
  • A 230mg piece of gold is hammered into a sheet measuring 23cm x 17cm. What is the thickness of the sheet in meters? Density of g
    6·1 answer
  • What is the mass number of the isotope lithium-7??
    15·2 answers
  • a bus is moving with the velociity of 36 km/hr . after seeing a boy at 20 m ahead on the road, the driver applies the brake and
    11·1 answer
  • One strategy in a snowball fight is to throw
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!