Answer:

Explanation:
We can solve the problem by using Kepler's third law, which states that the ratio between the cube of the orbital radius and the square of the orbital period is constant for every object orbiting the Sun. So we can write

where
is the distance of the new object from the sun (orbital radius)
is the orbital period of the object
is the orbital radius of the Earth
is the orbital period the Earth
Solving the equation for
, we find
![r_o = \sqrt[3]{\frac{r_e^3}{T_e^2}T_o^2} =\sqrt[3]{\frac{(1.50\cdot 10^{11}m)^3}{(365 d)^2}(180 d)^2}=9.4\cdot 10^{10} m](https://tex.z-dn.net/?f=r_o%20%3D%20%5Csqrt%5B3%5D%7B%5Cfrac%7Br_e%5E3%7D%7BT_e%5E2%7DT_o%5E2%7D%20%3D%5Csqrt%5B3%5D%7B%5Cfrac%7B%281.50%5Ccdot%2010%5E%7B11%7Dm%29%5E3%7D%7B%28365%20d%29%5E2%7D%28180%20d%29%5E2%7D%3D9.4%5Ccdot%2010%5E%7B10%7D%20m)
The acceleration of the body is 2 m/s^2 while the deceleration is - 1.2 m/s^2.
<h3>
What is the acceleration?</h3>
Let us recall that the acceleration is the change in the speed of a body with time. We have been told that the body accelerates for 3s and then decelerates to 2s. This implies that the total time that the object spent in motion is 5 s.
Thus;
v = u + at
v = final velocity
u = initial velocity
a = acceleration
t = time taken
v - u/t = a
a = 6 - 0/3
= 2 m/s^2
Again;
v - u/t = a
a = 0 - 6/5
a = - 1.2m/s^2
Learn more about acceleration:brainly.com/question/12550364
#SPJ1
<h3 />
Answer:
<u>Over the last century, the average surface temperature of the Earth has increased by about 1.0o F.</u>
Explanation:
hope this helps you!!
"Electrostatic forces are attractive or repulsive forces between particles that are caused by their electric charges."
Is it Conduction. Here's my theory e<span>nergy is transferred between the earth's surface and the atmosphere by Conduction, Convection and Radiation.</span>