Answer:
The acceleration of the bag of sand is .
Explanation:
We have,
Mass of a bag of sand is 100 kg
Weight of the bag of sand is 100 N
It is required to find the acceleration of the bag when it is dropped. The weight of an object is given by :
When it is dropped, a = g
So, the acceleration of the bag of sand is .
Answer:
a.
b.
Explanation:
<u>Given:</u>
- Velocity of the particle, v(t) = 3 cos(mt) = 3 cos (0.5t) .
<h2>
(a):</h2>
The acceleration of the particle at a time is defined as the rate of change of velocity of the particle at that time.
At time t = 3 seconds,
<u>Note</u>:<em> The arguments of the sine is calculated in unit of radian and not in degree.</em>
<h2>
(b):</h2>
The velocity of the particle at some is defined as the rate of change of the position of the particle.
For the time interval of 2 seconds,
The term of the left is the displacement of the particle in time interval of 2 seconds, therefore,
It is the displacement of the particle in 2 seconds.
Given :
An electron moving in the positive x direction experiences a magnetic force in the positive z direction.
To Find :
The direction of the magnetic field.
Solution :
We know, force is given by :
Here, q = -e.
Now, for above condition to satisfy :
So,
Therefore, direction of magnetic field is negative y direction.
Hence, this is the required solution.
Answer:
T₂ =602 °C
Explanation:
Given that
T₁ = 227°C =227+273 K
T₁ =500 k
Gauge pressure at condition 1 given = 100 KPa
The absolute pressure at condition 1 will be
P₁ = 100 + 100 KPa
P₁ =200 KPa
Gauge pressure at condition 2 given = 250 KPa
The absolute pressure at condition 2 will be
P₂ = 250 + 100 KPa
P₂ =350 KPa
The temperature at condition 2 = T₂
We know that
T₂ = 875 K
T₂ =875- 273 °C
T₂ =602 °C
Answer:
Explanation:
Magnets are of two major forms namely the permanent magnet and the temporary magnets. Temporary magnets magnetizes and demagnetize easily while permanent magnets does not magnetizes and demagnetize easily.
This permanents magnets are applicable in loudspeakers, generators, induction motor etc.
To increase the
The following will tend to increase the magnetic force acting on the rotor in an induction motor.
1. Increasing the strength of the bar magnet. Increase in strength of the magnet will lead to increase in the magnetic force acting on the rotor.
2. Increase in the magnetic line of force also known as the magnetic flux around the magnet will also increase the magnetic force acting on the rotor.