Answer:
Orbital period, T = 1.00074 years
Explanation:
It is given that,
Orbital radius of a solar system planet,
The orbital period of the planet can be calculated using third law of Kepler's. It is as follows :
M is the mass of the sun
T = 31559467.6761 s
T = 1.00074 years
So, a solar-system planet that has an orbital radius of 4 AU would have an orbital period of about 1.00074 years.
Answer:
t = 120.5 nm
Explanation:
given,
refractive index of the oil = 1.4
wavelength of the red light = 675 nm
minimum thickness of film = ?
formula used for the constructive interference
where n is the refractive index of oil
t is thickness of film
for minimum thickness
m = 0
t = 120.5 nm
hence, the thickness of the oil is t = 120.5 nm
Answer:
Explanation:
Generally, length of vector means the magnitude of the vector.
So, given a vector
R = a•i + b•j + c•k
Then, it magnitude can be caused using
|R|= √(a²+b²+c²)
So, applying this to each of the vector given.
(a) 2i + 4j + 3k
The length is
L = √(2²+4²+3²)
L = √(4+16+9)
L = √29
L = 5.385 unit
(b) 5i − 2j + k
Note that k means 1k
The length is
L = √(5²+(-2)²+1²)
Note that, -×- = +
L = √(25+4+1)
L = √30
L = 5.477 unit
(c) 2i − k
Note that, since there is no component j implies that j component is 0
L = 2i + 0j - 1k
The length is
L = √(2²+0²+(-1)²)
L = √(4+0+1)
L = √5
L = 2.236 unit
(d) 5i
Same as above no is j-component and k-component
L = 5i + 0j + 0k
The length is
L = √(5²+0²+0²)
L = √(25+0+0)
L = √25
L = 5 unit
(e) 3i − 2j − k
The length is
L = √(3²+(-2)²+(-1)²)
L = √(9+4+1)
L = √14
L = 3.742 unit
(f) i + j + k
The length is
L = √(1²+1²+1²)
L = √(1+1+1)
L = √3
L = 1.7321 unit