Answer:
The direction of the resulting force on this current is due east.
Explanation:
Given;
direction of the magnetic field to be due north
Applying right hand rule which states that: to determine the direction of the magnetic force on a positive moving charge point the thumb of the right hand in the direction of velocity v, the fingers in the direction of magnetic field B, and a perpendicular to the palm points in the direction of magnetic force.
Since the magnetic force must be perpendicular to the magnetic field, and direction of the magnetic field is due north, then the magnetic force must be due East.
Therefore, the direction of the resulting force on this current is due east.
From the word compound, the compound machine is already a combination of two or more types of simple machine. Thus, the answer is letter C. Because of its complexity, it is able to perform several other functions than a simple one.
(a) The work done by the force applied by the tractor is 79,968.47 J.
(b) The work done by the frictional force on the tractor is 55,977.93 J.
(c) The total work done by all the forces is 23,990.54 J.
<h3>
Work done by the applied force</h3>
The work done by the force applied by the tractor is calculated as follows;
W = Fd cosθ
W = (5000 x 20) x cos(36.9)
W = 79,968.47 J
<h3>Work done by frictional force</h3>
W = Ffd cosθ
W = (3500 x 20) x cos(36.9)
W = 55,977.93 J
<h3>Net work done by all the forces on the tractor</h3>
W(net) = work done by applied force - work done by friction force
W(net) = 79,968.47 J - 55,977.93 J
W(net) = 23,990.54 J
Learn more about work done here: brainly.com/question/25573309
#SPJ1
Answer:
So coefficient of kinetic friction will be equal to 0.4081
Explanation:
We have given mass of the block m = 0.5 kg
The spring is compressed by length x = 0.2 m
Spring constant of the sprig k = 100 N/m
Blocks moves a horizontal distance of s = 1 m
Work done in stretching the spring is equal to
This energy will be equal to kinetic energy of the block
And this kinetic energy must be equal to work done by the frictional force
So
So coefficient of kinetic friction will be equal to 0.4081