<h3><u>Answer;</u></h3>
Large mirrors are easier to build than large lenses.
<h3><u>Explanation;</u></h3>
- <em><u>Reflector telescopes have a number of advantages as compared to refracting telescopes and other types of telescopes. </u></em>
- <em><u>Reflector telescopes do not suffer from chromatic aberration because all wavelengths will reflect off the mirror in the same way. The support for the objective mirror is all along the back side so they can be made very large.</u></em>
- Additionally, reflector telescopes are cheaper to make than refractors of the same size. Also since in reflector telescopes light is reflecting off the objective, rather than passing through it, only one side of the reflector telescope's objective needs to be perfect.
Answer:
When you have to do an English-Metric (SI) length conversion, and you already know the English units of length (miles, yards, feet, inches, etc.), all you need to remember is one simple relationship, and you can readily convert any length in the SI system, to the equivalent length in the other.
1 foot (ft) = 0.3048 meters (m)
BIn this case you need your answer in inches. You (hopefully) know there are 12 inches in a foot, so you just do the following:
1 inch (in) = 1/12 ft = 0.3048/12 m = 0.0254 m
The answer is 107 degrees. The geometric shape for ammonia is Trigonal Pyramidal, even though its electron geometry is “Tetrahedral”. This is because ammonia has a lone pair of electrons that occupy its space like the other 3 hydrogens in the geometric structure.
The answer 180 degrees. This is because of the linear geometric structure of carbon dioxide. The oxygen atom is on either side of the carbon atom, each is bound by a double covalent bond. All the atoms are involved in the bond and there are no one pair electrons.
The answer is tetrahedral geometry. This is because all the 4 valence electrons of the carbon are involved in a bond with a hydrogen atom. The angles in a tetrahedral geometric arrangement, such as in methane, is 109.5 degrees, where the hydrogen atoms are as far apart, from each other, as possible .