Answer:
2. 200N
3.50kg
4.700N
Explanation:
Weight is another word for the force of gravity
Weight is a force that acts at all times on all objects near Earth.
F=m*g
where g=acceleration due to gravity
2. due to the gravitational fields of the earth , assume gravitational acceleration=10m/s2
F=20*10= 200N
3.same as above
mass=Force/gravitational acceleration
mass=500/10 = 50kg
4.force=mass*gravitational acceleration
force=70*10=700N
Answer:

Explanation:
Given that,
The current flowing in the circuit, I = 3 A
The power of the battery, P = 25 W
We need to find the resistance of the battery. We know that the power of the battery is given by the formula as follows :

Put all the values to find R.

So, the resistance is equal to
.
Answer:
0.15 s
Explanation:
From the question given above, the following data were obtained:
Speed of sound (v) = 330 m/s
Distance (x) = 25 m
Time (t) =?
The time taken for the echo of the sound to the bat can be obtained as follow:
v = 2x / t
330 = 2 × 25 / t
330 = 50 / t
Cross multiply
330 × t = 50
Divide both side by 330
t = 50 / 330
t = 0.15 s
Thus, it will take 0.15 s for the echo of the sound to the bat
Answer:
Option C. 4 Hz
Explanation:
To know the correct answer to the question given above, it is important we know the definition of frequency.
Frequency can simply be defined as the number of complete oscillations or circles made in one second.
Considering the diagram given above, the wave passes through the medium over a period of one second.
Thus, we can obtain the frequency by simply counting the numbers of complete circles made during the period.
From the diagram given above,
The number of circles = 4
Thus,
The frequency is 4 Hz
Answer:
at 
Explanation:
We need to calculate the components of the resultant force on both the x (horizontal) and y (vertical) direction.
Components of the first force F1:

Components of the second force F2:

So the components of the resultant force are

So the magnitude of the resultant force is

And the direction is

The magnitude of the acceleration can be found by using Newton's second law:

while the direction is the same as the resultant force,
.