Answer: <u>D. An AC circuit</u>
Explanation:
I took it on a test and it was correct ; )
The velocity of the car would be 100 kilometer per hour.
Answer:
See bolded below.
Explanation:
Consider the " Before " and " After. " " Before, " this particle 1 was trying to catch up with this particle 2, and " after " particle one had collided with particle two. Take a look at the attachment below for a more detailed examination.
Here is how this will play out. Particle 1, with great velocity, will hit particle 2, which would mean that Particle 2 has less velocity than Particle 1. Now after the collision, energy is transferred to Particle 2, and while Particle 1 has now stopped in it's tracks, Particle 2 - with more energy than before - will continue as long as it has to before friction eventually brings it to a stop.
_______________________________________________________
From this we can conclude that Vf, from the picture below, must have less energy than V1, but more energy than V2 - and vice versa.
Answer:
362.41 km/h
Explanation:
F = Force
m = Mass = 84 kg
g = Acceleration due to gravity = 9.81 m/s²
C = Drag coefficient = 0.8
ρ = Density of air = 1.21 kg/m³
A = Surface area = 0.04 m²
v = Terminal velocity
F = ma

Converting to km/h

The terminal velocity of the stone is 362.41 km/h
<span>a cell eliminates endocytosis.
</span>