Answer:
Explanation:subtract all of those by the all of the other numbers and that’s the answer i think that’s the way I learned it
(3) 8.3 N/kg. The gravitational field strength at a point is the force per unit mass exerted on a mass placed at that point. So at the point where the Hubble telescope is, it is (9.1 x 10^4)N/(1.1 x 10^4 kg) = 8.3 N/kg
Fam
Answer:

Explanation:
Given:
- mass of the object on a horizontal surface,

- coefficient of static friction,

- coefficient of kinetic friction,

- horizontal force on the object,

<u>Now the value of limiting frictional force offered by the contact surface tending to have a relative motion under the effect of force:</u>

where:
normal force of reaction acting on the body= weight of the body


As we know that the frictional force acting on the body is always in the opposite direction:
So, the frictional force will not be at its maximum and will be equal in magnitude to the applied external force and hence the body will not move.
so, the frictional force will be:

When adding a solute to the solvent, the solution will then boil at a point much higher than the solvent itself. Therefore, it would take much longer for the solution to boil. Among the choices, the correct answer would be B. The water will boil at a higher temperature.
In several of the questions you've posted during the past day, we've already said that a wave with larger amplitude carries more energy. That idea is easy to apply to this question.